
1

Prof. Reuven Aviv

Dept. of Computer Science

Tel Hai Academic College

Computer Graphics

1. Intro; Windows and Viewports

Slides adapted from: F.S. Hill, S.M. Kelley: Computer Graphics with OpenGL

This course

• 4 hrs Monday 14:30 – 18:00

• Theory & Developing programs

• Math: Algebra (vectors, matrices)

• Diff Calculus II

• Assignments:

• Problem Sets (3/4) – 20%

• Programming Assignments (3/4) – 20%

• Presentation (OpenGL) – 10%

• Exam I – 15%

• Final Exam – 35%

2

This course (2): Topics

• 1. Windows Vieports

• 2. Vector Mathematics

• 3. OPENGL Drawing objects (STUDENTS)

• 4. Transformations

• 5. 3D Viewing

• 6. OPENGL Viewing (STUDENTS)

• 7. Eaxm; Mesh Modeling

• 8. Rendering faces, realism

• 9. OPENGL Lightning, Texture

• 10. Raster Operations

• 11. Curve and Surface Design

• 12. OPENGL Curve and Surface Design

• 13. ray Tracing

What is Computer Graphics?

• Pictures generated by a computer

– Example: a ray-traced picture with
shadows.

3

Computer Graphics Tools

• HW/SW.

– video monitors, graphics cards, printers

– input devices

• Software tools: Graphics routines

– Window management, dialog, …

– set up a camera in 3D coordinate system and take

snapshots of objects

– Device Independent Libraries (OpenGL)

• What is the diff between Computer Graphics
and Image Processing?

Computer Graphics and Image Processing

• Computer graphics create pictures and images

based on some model.

• Image processing improves or alters images

– remove noise, enhance contrast, sharpen…

– search for certain features in an image, and

highlight them…

• Name some applications of computer

graphics

4

Application: Movies

Application: Volume Visualization

• Areas of different colors immediately inform a

physician about the health of each part of the

brain.

5

Application: Displaying Mathematical Functions

• E.g., Mathematica®

Models

• What’s the diff between a model and its
picture?

• Model consists of primitives

– Points, lines, polylines, text, regions

• 3D bodies modeled by primitives

• triangles �Mesh � surface

– Location, orientation

• Attributes: e.g. color, thickness

• Light sources:

–Direct, ambient

• More attributes: Reflectance, transparent

6

Modeling by Polylines

• polyline: connected sequence of straight lines.

• (x0, y0), (x1, y1), (x2, y2),, (xn, yn).

• The model must be processed

– Translated, rotated, scaled etc..

Image Processing Example: “Jaggies”

• Any close-up version an image will show that it

is composed of pixels rather than lines. Thus

the lines also appear jagged (the Jaggies).

7

Modeling and Viewing

• We want to separate the coordinates we use in

a program to describe the geometrical object

from the coordinates we use to size and

position the pictures of the objects on the

display.

• Why?

• Description is usually referred to as a modeling

task, and displaying pictures as a viewing task.

World Coordinates

• The coordinates by which objects are described

are called world coordinates

• the numbers used for x and y (and z) are those in

the world, where the objects are defined.

• Which part of the world we wish to take a

picture of?

8

World Window, Clipping

• We define a rectangular world window in these

world coordinates.

• The world window specifies which part of the

world should be drawn: what inside the window

should be drawn, what lies outside should be

clipped away and not drawn.

• OpenGL does the clipping automatically

• Where on the screen the picture will be

drawn?

Viewport

• we define a rectangular viewport in the screen
window on the display.

• A mapping between the world window and the
viewport is established by OpenGL.

• What kind of transformations are included
in this mapping?

• Scaling and translation

• The objects inside the world window are
automatically transformed in sizes and locations
to be inside the viewport (in screen coordinates,
which are pixel coordinates on the display).

9

Windows and Viewport

Window to Viewport transformation

• Window is described by its boundaries

– left, top, right, bottom values, w.l, w.t, w.r, w.b.

• How the viewport is described?

• v.l, v.t, v.r, v.b, in screen window coordinates.

World window Viewport

10

Window to Viewport transformation

• Transformation: aligned rect. to aligned rect.

– If the aspect ratios of the 2 rectangles are not

the same, distortion will result.

• What do we require from the
transformation?

sx

sy

x

y

Screen window
window

W.l W.r

W.t

W.b

viewport

V.r

V.b

V.l

V.t

Window to Viewport transformation

• Proportionality requirement:

• example, if x is ¼ of the way between left and

right, then the screen x (sx) should be ¼ of the

way between the left and right viewport

boundaries.

• What kind of transformation this is?

11

Window-to-Viewport Transformation (2)

• The mapping must be linear.

– sx= Ax + C, sy = B y + D

–We require

– (sx – V.l)/(V.r – V.l) = (x – W.l)/(W.r – W.l)

– (sy – V.b)/(V.t – V.b) = (y – W.b)/(W.t – W.b)

Window-to-Viewport Transformation (3)

• Result

• sx = A x + C, sy = B y + D, with

A
V r V l

W r W l
C V l A W l

B
V t V b

W t W b
D V b B W b

=
−

−
= − ⋅

=
−

−
= − ⋅

. .

. .
, . .

. .

. .
, . .

12

OpenGL Functions To do the Mapping

• Defining the World window:

– void gluOrtho2D(GLdouble left, GLdouble

right, GLdouble bottom, GLdouble top);

• Viewport:

– void glViewport(GLint x, GLint y, GLint width,

GLint height);

• All objects defined in the modeling step are

transformed by this transformation

• End of the Graphics pipeline

Application: Tiling

• How can we create these pictures?

a.Shift the Viewport within a for loop

b.Shift the Viewport and flip theWindow

13

Modeling

How do we model the object on the left?

Modeling (2)

• The model is a collection of concentric

hexagons of various sizes, each rotated slightly

with respect to the previous one.

�Start with a small hexagon

�(a list of vertices)

�Then scale and rotate in a loop

14

Clipping by the World Window

Clipping refers to viewing only the parts of

an image that are in the World Window

Example: 2 Windows on the model

Applications: Zooming & Panning

• Zoom: concentric set of windows of decreasing

size, displayed from outside in, into a viewport

• Pan: translating the window to a new position.

• How to Zoom?
• Panning: Moving camera over the world. How?

15

Clipping Line segments

• We want to draw

only the parts of

segment that are

inside the World

Window.

• chop portions

outside the window

• What are the

simplest cases?

Cohen Sutherland Algorithm (1)

• 2 trivial cases:

• 1. segment AB totally

inside the window

–we draw all of

• Segment CD totally

outside the window

–we do not draw at

all

16

Cohen Sutherland Algorithm (2)

• we give each endpoint of a segment a 4 bit code

specifying where it lies relative to the window W

• How many states are possible?

Clipping (4)

• The diagram below shows Boolean codes for

the 9 possible regions the endpoint lies in (left,

above, below, right).

Cohen Sutherland Algorithm (3)

17

• Do{ //* for a give segment P1P2

– Form code-words for P1 and P2

– If (trivial accept) return 1;

– If (trivial reject) return 0;

–Clip segment at next window border;

• get new values for P1 and P2; discard
outside part

} while (1)

� After how many iterations at most the
algorithm stops?

� Result: endpoints of the clipped segments

Cohen Sutherland Algorithm (4)

• We know the

locations of P1 and P2

• How?

• Assume P1 is to the

right of right

boundary

• We know Ax

• How?

Clipping: replace (P1x, P1y) by (Ax, Ay)

18

• Ax = Wr (known)

• Ay = ?

• d/dely = e/delx

– d = e*(dely/delx)

• delx = P1x – P2x

• dely = P1y – P2y

• e = P1x – Wr.

• Ay = P1y – d.

Clipping: replace (P1x, P1y) by (Ax, Ay)

Ay = P1y + (Wr-P1x))(P1y-P2y)/(P1x-P2x)

Cohen Sutherland Algorithm (5)

• Change P1 to A, then P2 to B, then A to C, then

P2 to D

• Equation of line: = mx + b

• Point D: y = W.t, ���� x = (W.t – b)/m

• Point B: x = W.r ���� y = m*W.r + b

19

Drawing Regular Polygons, Circles, and Arcs

• A polygon is simple if no two of its edges cross

each other. More precisely, only adjacent edges

can touch and only at their shared endpoint.

• A polygon is regular if it is simple, if all its sides

have equal length, and if adjacent sides meet at

equal interior angles.

Regular Polygons

20

“Refinement” Transformation: Koch Curves

• Start with a line segment

• Each line segment is refined

–Replaced by a 4 segments bump

K2:

1

60°

K1:

1

S0 S1 S2

Koch Curves (2)

• Successive generations of the Koch curve are

denoted K0, K1, K2,…

• The 0-th generation shape K0 is just a

horizontal line of length 1.

• The curve K1 is created by dividing the line K0

into three equal parts, and replacing the

middle section with a triangular bump having

sides of length 1/ 3.

• The total line length is 4 / 3.

21

Koch Curves (2)

• The second-order curve K2 is formed by

building a bump on each of the four line

segments of K1.

K2:

1

60°

K1:

1

Koch Snowflake (3 joined curves)

• Perimeter: the i-th generation shape Si is three

times the length of a simple Koch curve, 3(4/3)i,

which grows forever as i increases.

• Area inside the Koch snowflake: grows quite

slowly, and in the limit, the area of S∞ is only 8/5

the area of S0.

S0 S1 S2

22

Fifth-generation Koch Snowflake

How do we represent curves?

Representing Curves

• Three forms of equation for a given curve:

– Explicit : e.g. line: y = m*x + b

– Implicit: F(x, y) = 0; e.g., y – m*x –b = 0

– Parametric: x = x(t), y = y(t), t a parameter;

– frequently, 0 ≤ t ≤ 1.

• P(t) = P1*(1-t) + P2*t. Line segment

• P1 P2 and P are 2D points with x and y values.

• x = x1*(1-t) + x2*t

• y = y1*(1-t) + y2*t.

23

Specific Parametric Forms

• line:

– x = x1*(1-t) + x2*t ; y = y1*(1-t) + y2*t

• circle: x = r*cos(2π t), y = r*sin(2π t)

• ellipse: x = W*r*cos(2π t), y = H*r*sin(2π t)

– W and H are half-width and half-height

– 0 <= t <= 1

• How do we find implicit form from

parametric?

Finding Implicit Form from Parametric Form

• Combine the x(t) and y(t) equations to eliminate t.

• ellipse: x = W*r*cos(2π t), y = H*r*sin(2π t)

– X2 = W2r2cos2(2π t), y2 = H2r2sin2(2π t).

– Dividing by the W or H factors and adding gives

(x/W)2 + (y/H)2 = 1, the implicit form.

• How do we model a curve?

24

Modeling Curves

• a curve C with the parametric form

• P(t) = (x(t), y(t)) as t varies from 0 to T

• we use samples of P(t) at closely spaced

instants.

a). b).

P1

Pm

P2

P(t) = (x(t), y(t))
@ t = 0

@ t = T

Modeling Curves (2)

– The position Pi = P(ti) = (x(ti), y(ti)) is

calculated for a sequence {ti} of times.

– The curve P(t) is approximated by the

polyline based on this sequence of points Pi.

a). b).

P1

Pm

P2

P(t) = (x(t), y(t))
@ t = 0

@ t = T

25

Modeling Curves in OpenGL

• Code:

// draw the curve (x(t), y(t)) using

// the array t[0],..,t[n-1] of sample times

glBegin(GL_LINES);

for(int i = 0; i < n; i++)

glVertex2f((x(t[i]), y(t[i]));

glEnd();

Parametric Curves: Advantages

• For Modeling/drawing purposes, parametric

forms circumvent all of the difficulties of implicit

and explicit forms.

• Curves can be multi-valued, and they can self-

intersect any number of times.

• Verticality presents no special problem: x(t)

simply becomes constant over some interval in t.

