1.Data Structures and Algorithms with Object-Oriented Design Patterns in Java
2. Java Data Structures (2nd edition). 2001, Particle, http://www.theparticle.com/javadata2.html
Deleting items from a Binary Search Tree...
 Every database system must provide for deletion of items. A Binary Search Tree is a very good option for implementing a database (fast searches, sorts, inserts, etc.). One problem that stands in the way though is that it's not very straight forward to delete an item from a database represented by a binary tree. More precisely, the problem is in maintaining the tree structure while the deletion process.
 Deleting items from a Binary Search Tree can be rather tricky. On one hand, you'd like to remove the object from the tree, on the other, you don't want the process to destroy the tree structure. There are many algorithms for this, and they all vary in degree of simplicity and efficiency.
 The simplest one (which we will not cover here), is to simply have a boolean variable inside a node. That boolean variable tells us if that node is valid or not. Whenever we want to delete that node, we simply set that valid variable to false; making all the traversal functions simply skip that node. The actual removal can take place when the tree is rebuilt. This may seem like a waste of space, but most of the time, it's not (in today's world, several extra bytes inside the tree structure don't make much of a difference).
 The above can actually be used in conjunction with a more complicated approach. For example, lets take a regular company database. Throughout the day, there are thousands of transactions, deletions, insertions, etc., all this is handled by the algorithm described above (a boolean valid variable). At the end of the day (night), when the system becomes free, the program does a routine clean-up of the tree from these "deleted" items. Since setting or unsetting a boolean variable can be fast, the database is really fast during the day, i.e.: when it matters.
 Cleaning up a tree from these types of "deleted" items can be accomplished in many different ways. If there are too many of them, then it might be worthwhile to simply rebuild the tree from scratch (making sure it doesn't loose it's advantageous structure, i.e.: doesn't become a linked list). The program could also fire up a more complicated approach to delete each node individually. (While at it, the system could also be optimizing the tree structure ;-)
 Now, what is that "more complicated" approach that I keep talking of? It is the approach of switching the node being deleted with the one currently in the tree, only at lower level. Deleting a node that has no children is pretty simple, we just remove that node (and set the parent's pointer to it to null). Deleting a node that has one child is also easy. We delete the node, and make it's parent point to that only child of the deleted node.
 The problem comes when you try to delete a node which has two valid children. Which one do you pick to be it's successor (take it's parent's place)? Actually, in most cases, neither!
 You have to realize that we're dealing with a binary search tree. Search trees have very specific properties. For example, if we need to remove a node, we look for nearest right child that doesn't have a left son (or nearest left child, that doesn't have a right son). We then replace that newly found node with the one we are trying to delete (and making sure that all the links go where they should). The process of deleting that right child with no left son actually involves a simple removal described above: i.e.: the node is simply replaced by it's only child (in this case the right child; since there is no left). Confusing? Lets jump into the code to clear it up...
public static pBSTRemoveNode tree_removeNumber(

 pBSTRemoveNode r,Comparable n){

 if(r != null){

 if(r.data.compareTo(n) < 0){

 r.right = tree_removeNumber(r.right,n);

 }else if(r.data.compareTo(n) > 0){

 r.left = tree_removeNumber(r.left,n);

 }else{

 if(r.left == null && r.right == null){

 r = null;

 }else if(r.left != null && r.right == null){

 r = r.left;

 }else if(r.right != null && r.left == null){

 r = r.right;

 }else{

 if(r.right.left == null){

 r.right.left = r.left;

 r = r.right;

 }else{

 pBSTRemoveNode q,p = r.right;

 while(p.left.left != null)

 p = p.left;

 q = p.left;

 p.left = q.right;

 q.left = r.left;
 q.right = r.right;

 r = q;

 }

 }

 }

 }
 return r;

 }
Към файла BinarySearchTree:

//Private method

 private TreeNode remove(TreeNode r,Object n){

if(r != null){

if(c.compare(r.data,n) < 0){

r.right = remove(r.right,n);

}else if(c.compare(r.data,n) > 0){

r.left = remove(r.left,n);

}else{
//c.compare(r.data,n) == 0

if(r.left == null && r.right == null){

r = null;

}else if(r.left != null && r.right == null){

r = r.left;

}else if(r.right != null && r.left == null){

r = r.right;

}else{

if(r.right.left == null){

r.right.left = r.left;

r = r.right;

}else{

TreeNode q,p = r.right;

while(p.left.left != null)

p = p.left;

q = p.left;

p.left = q.right;

q.left = r.left;

q.right = r.right;

r = q;

}

}

}

}

return r;

}

 public Object remove(Object element) {

TreeNode r = remove(root,element);

return r != null ? r.data : null; }

PAGE
2

