
Data Structures and Algorithms 1

Stacks and Queues

Topics to be covered :

• What are ‘stacks’ and ‘queues’?
• Terminology
• How are they implemented?
• Example uses of stacks and queues

Data Structures and Algorithms 2

Stacks

A stack is a list in which all insertions and deletions are made
at one end, called the top. The last element to be inserted into
the stack will be the first to be removed. Thus stacks are
sometimes referred to as Last In First Out (LIFO) lists.

top

Data Structures and Algorithms 3

Stack Interface

The following operations can be applied to a stack:

InitStack(Stack): creates an empty stack
Push (Item): pushes an item on the stack
Pop(Stack): removes the first item from the stack
Top(Stack): returns the first item from the stack

w/o removing it
isEmpty(Stack): returns true is the stack is empty

Data Structures and Algorithms 4

Push

21
12
5

5
4
3
2
1

Push(41) 41
21
12
5

5
4
3
2
1

Data Structures and Algorithms 5

Pop

41
21
12
5

5
4
3
2
1

21
12
5

5
4
3
2
1

x = Pop()

Data Structures and Algorithms 6

Stack Implementation using Arrays
(quick and dirty)

int StackArray[50]; // StackArray can contain
// up to 50 numbers

int top=-1; // index of the top element of the stack
// -1 used to indicate an empty stack

void Push(int elem)
{

top++;
StackArray[top] = elem;

}
int Pop()
{

int elem = StackArray[top];
top--;
return elem;

}

Data Structures and Algorithms 7

Problem
The previous solution works on a fixed array. What if we want
to have multiple stacks in a program? Copy code?

int StackArray2[50];// a second stack
int top2=-1; // index of the top element of the stack

void Push2(int elem)
{

top2++;
StackArray[top2] = elem;

}
int Pop(){
…
}

How do we make this more efficient?

Bad idea!

Data Structures and Algorithms 8

Abstract Data Type

Definition:
- An Abstract Data Type is some sort of data together
with a set of functions (interface) that operate on the data.

- Access is only allowed through that interface.

- Implementation details are ‘hidden’ from the user.

Data Structures and Algorithms 9

The Stack-ADT
#define STACKSIZE 50

struct Stack
{

int item[STACKSIZE];
int top;

};

void InitStack(Stack &st);
void Push(Stack &st, int elem);
int Pop (Stack &st);
int Top (Stack st);
bool isEmpty(Stack st);

stack.h

Only defines the interface!

Stack specification

Data Structures and Algorithms 10

Using the Stack ADT
#include "stack.h"

void main()
{

Stack st1, st2; // declare 2 stack variables

InitStack(st1); // initialise them
InitStack(st2);

Push(st1, 13); // push 13 onto the first stack
Push(st2, 32); // push 32 onto the second stack

int i = Pop(st2); // now popping st2 into i
int j = Top(st1); // returns the top of st1 to j

// without removing element
};

Data Structures and Algorithms 11

Application of Stacks

e.g.
Evaluation of arithmetic expressions:
Usually, arithmetic expressions are written in infix notation, e.g.

A+B*C

An expression can as well be written in postfix notation (also
called reverse polish notation):

A+B becomes AB+
A*C becomes AC*
A+B*C becomes ABC*+
(A+B)*C becomes AB+C*

Data Structures and Algorithms 12

Evaluating expressions

Given an expression in postfix notation. Using a stack they can
be evaluated as follows:

- Scan the expression from left to right

- When a value (operand) is encountered, push it on the stack

- When an operator is encountered, the first and second element
from the stack are popped and the operator is applied

- The result is pushed on the stack

Data Structures and Algorithms 13

Evaluating Expressions (2)

Example: 7 1 3 + - 4 *

Stack

Data Structures and Algorithms 14

Another Stack Example
- Are stacks only useful for making sense of postfix notation

expressions?

- Not so, Stacks have many uses!

- Another e.g. : Reversing word order

STACKS � SKCATS

- Simply push each letter onto the stack, then pop them
back off again and hey presto!

Data Structures and Algorithms 15

Another Stack Example(2)

STACKS SKCATS

Data Structures and Algorithms 16

Queues

Definition:

A Queue is an ordered collection of items from which items may be
deleted at one end (called the front of the queue) and into which items may
be inserted at the other end (the rear of the queue).

Data Structures and Algorithms 17

Queue Interface

The following operations can be applied to a queue:

InitQueue(Queue): creates an empty queue

Join (Item): inserts an item to the rear of the queue

Leave(Queue): removes an item from the front of the queue

isEmpty(Queue): returns true is the queue is empty

Data Structures and Algorithms 18

Queues (FIFO-lists)

21 55 7 12

FrontRear

36 21 55 7 12Join(36);

Elements can only be added to the rear of the queue and removed
from the front of the queue.

Rear Front

Data Structures and Algorithms 19

Queues (contd.)

36 21 55 7 12

FrontRear

36 21 55 7Leave();

Rear Front

Data Structures and Algorithms 20

Implementation of Queues

Removing an element from the queue is an expensive operation
because all remaining elements have to be moved by one position.
A more efficient implementation is obtained if we consider
the array as being ‘circular’:

[0]

[1]

[2]

[n-1]

[n-2]
e1

e2

e3

front

rear Problem:
How do we know if queue is full/empty?

Data Structures and Algorithms 21

Joining the Queue

Initially, the queue is empty, i.e. front == rear. If we add an element to
the queue we
1) check if the queue is not full
2) store the element at the position indicated by rear
3) increase rear by one, wrap around if necessary (in this case rear always points

to the last item in the queue – the rear item)

Adding one element:
if (rear == QSIZE -1)

rear = 0;
else

rear = rear+1;
add an element to the queue

Data Structures and Algorithms 22

Application of Queues

In a multitasking operating system, the CPU time is shared between multiple
processes. At a given time, only one process is running, all the others are
‘sleeping’. The CPU time is administered by the scheduler. The scheduler keeps
all current processes in a queue with the active process at the front of the queue.

D C B A

next process

running
process

Process
Queue

Data Structures and Algorithms 23

Round-Robin Scheduling

Every process is granted a specific amount of CPU time, its
‘quantum’. If the process is still running after its quantum run out,
it is suspended and put towards the end of the queue.

D C B A

next process

A D C B

running
processProcess

Queue

Data Structures and Algorithms 24

The Queue-ADT
#define QSIZE 50

struct Queue
{

int items[QSIZE];
int rear;
int front;

};

void InitQueue(Queue &q);
void Join(Queue &q, int elem);
int Leave(Queue &q);
bool isEmpty(Queue q);

queue.h

