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Static vs. Dynamic Data Structures

• Static data structures such as arrays allow
- fast access to elements 
- expensive to insert/remove elements 
- have fixed, maximum size

• Dynamic data structures such as linked lists allow
- fast insertion/deletion of element 
- but slower access to elements 
- have flexible size
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Linked Lists
• So far, if we required an unknown number of some kind of data structure,

we would  define an array with some maximum number of elements.

• This may use a lot of memory needlessly and also makes the data quite 
hard to manipulate.

• A linked list is a number of structures (i.e nodes) which are connected 
together using pointers.

• Each structure contains at least one pointer that points to another
structure in the linked list.

• The pointer of the final structure in the list points to null.

null

Start
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Creating a linked list
• We may represent a linked list node in Java by creating a class of type node :

class Node {
int data = 0; // data in each node
Node next = null; // pointer to next node in list

}

• We can create nodes in our code in the same way that we create new objects by using 
the new operator:

• Example :
Node p = null; // declare a node object
p = new Node(); // create the node
p.data = 100;  // set data in node to 100
p.next = NULL; // set next pointer to point to null

• This type of data structure is considered a recursive data structure since it calls itself.
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Manipulating the Linked List
• In order to access the elements of the linked list, a pointer to the first 

structure is all that is required.

• We can add a node to the linked list by using the new operator 
and setting the pointer in the previous node to point to the new node.

• We can recognise the last node in the list by the fact that its “next” pointer 
points to a null or else by having an end node pointer as well as a start 
node pointer.

• To remove a node from the linked list, simply repoint the pointer in the 
structure which points to node that is to be removed (plus any other relevant 
pointers). 
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Example

Draw the picture that results from the following code:

Node front;
Node temp;

front = new Node();
front.data = 1;

front.next = new Node();
front.next.data = 2;
front.next.next = null;

temp = front;
front = front.next;
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Inserting Nodes to Linked Lists
Inserting an element at the head of a linked list:

4 6

3

root

n
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root
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root
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1) Create a new node

2) Set the link of the new node

3) Set root so that it points
to the new node

null

null

null
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Removing Nodes From Linked Lists
Removing an element from the linked list:

4 6root

1) Create a temporary pointer

temp

4 6root

2) Set root to the new head

temp

6root
3) Delete old node

null

null

null
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Traversing Linked Lists

Traversing a linked list:

4 6root

Start with root and 'hop' from node to node until next
points to null:

Node c = root;
while (c != null)
{

PerformOperation(c);
c = c.next;

}

9
null
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Traversing Linked List Recursively
• Example : Printing data in a Linked List

• What is the base case?
- The base case :  if null is reached

•What is the recursive case?
- The recursive case : printList(head.next);

int printList(node head)
{

if (head == null) {  // base case: list is empty
return 0;

else {              // recursive case
System.out.print(head.data);
return printList(head.next);

}
}
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Sample Linked List ADT
List specification

class Node

{

int data = 0;
Node next = null;

}

clas LinkedList

{

Node head = null;

Node InitList(LinkedList list){ … … … }

void AddHead(LinkedList list, int elem) {… … …}

void AddTail(LinkedList list, int elem) {… … …}

int size(LinkedList list) {… … …}

boolean inList(LinkedList l, int elem) {… … …}

void RemoveHead(LinkedList list) {… … …}

... (You can think of other useful functions)

}
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Different Linked Lists
• So far we have only been looking at singly linked lists

• There are 3 other types of linked lists: 
- circular linked lists :

Start

- doubly linked lists :
Start

null
null

• And of course, circular doubly linked lists
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Doubly Linked List
• One shortcoming of singly linked lists is that we can only 

move forwards through the list

• A doubly linked list is a linked list which also has pointers
from each element to the preceding element

• Doubly linked lists make manipulation of lists easier

Start

null
null
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Doubly Linked Lists in Java

• We need only add an extra line to make our list doubly linked.

• A node in a doubly linked list would look something like this:

class Node
{

int data = 0;
Node next = null;
Node prev = null; // note the extra line

}
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Inserting to a DLL

Inserting to a doubly linked list is the almost the same as inserting
to a singly linked list. The only difference is that you have an
extra “previous” pointer to take care of as well as the “next” 
pointer.

Start

null
null

?
?
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A Stack Implementation

In the following case study we are going to rewrite the
stack implementation using a linked list.
Remember the stack interface:

void InitStack(Stack st)
void Push(Stack st, int elem)
int Pop(Stack st)
int Top(Stack st)

Stack specification
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A Stack Implementation (2)
class Node
{

int data = 0;
Node next = null;
Node prev = null;

}

class Stack
{

Node Bottom = null;
Node Top = null;

<< stack methods >>
}

Class Node represents an
element in the stack.

Top points to the top element
of the stack. Bottom keeps track
of the location of the bottom of 
the stack
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A Stack Implementation (3)
void Init(Stack st)
{

st.Top = null;
st.Bottom = null;

}

void Push(Stack st, int elem)
{

Node new_node = null;
new_node = new Node();
new_node.data = elem;
// Set up the pointers

st->Top.next = new_node;
new_node.next = null;
new_node.prev = st.Top;
st.Top = new_node;

}



Programming and Data Structures 18

A Queue implementation

A queue can also be easily implemented using a doubly linked list:

I’ll leave this as an exercise for you to try.

Front

NULL
NULL

Rear


