
Programming and Data Structures 1

Static vs. Dynamic Data Structures

• Static data structures such as arrays allow
- fast access to elements
- expensive to insert/remove elements
- have fixed, maximum size

• Dynamic data structures such as linked lists allow
- fast insertion/deletion of element
- but slower access to elements
- have flexible size

Programming and Data Structures 2

Linked Lists
• So far, if we required an unknown number of some kind of data structure,

we would define an array with some maximum number of elements.

• This may use a lot of memory needlessly and also makes the data quite
hard to manipulate.

• A linked list is a number of structures (i.e nodes) which are connected
together using pointers.

• Each structure contains at least one pointer that points to another
structure in the linked list.

• The pointer of the final structure in the list points to null.

null

Start

Programming and Data Structures 3

Creating a linked list
• We may represent a linked list node in Java by creating a class of type node :

class Node {
int data = 0; // data in each node
Node next = null; // pointer to next node in list

}

• We can create nodes in our code in the same way that we create new objects by using
the new operator:

• Example :
Node p = null; // declare a node object
p = new Node(); // create the node
p.data = 100; // set data in node to 100
p.next = NULL; // set next pointer to point to null

• This type of data structure is considered a recursive data structure since it calls itself.

Programming and Data Structures 4

Manipulating the Linked List
• In order to access the elements of the linked list, a pointer to the first

structure is all that is required.

• We can add a node to the linked list by using the new operator
and setting the pointer in the previous node to point to the new node.

• We can recognise the last node in the list by the fact that its “next” pointer
points to a null or else by having an end node pointer as well as a start
node pointer.

• To remove a node from the linked list, simply repoint the pointer in the
structure which points to node that is to be removed (plus any other relevant
pointers).

Programming and Data Structures 5

Example

Draw the picture that results from the following code:

Node front;
Node temp;

front = new Node();
front.data = 1;

front.next = new Node();
front.next.data = 2;
front.next.next = null;

temp = front;
front = front.next;

Programming and Data Structures 6

Inserting Nodes to Linked Lists
Inserting an element at the head of a linked list:

4 6

3

root

n

4 6

3

root

n

4 6

3

root

n

1) Create a new node

2) Set the link of the new node

3) Set root so that it points
to the new node

null

null

null

Programming and Data Structures 7

Removing Nodes From Linked Lists
Removing an element from the linked list:

4 6root

1) Create a temporary pointer

temp

4 6root

2) Set root to the new head

temp

6root
3) Delete old node

null

null

null

Programming and Data Structures 8

Traversing Linked Lists

Traversing a linked list:

4 6root

Start with root and 'hop' from node to node until next
points to null:

Node c = root;
while (c != null)
{

PerformOperation(c);
c = c.next;

}

9
null

Programming and Data Structures 9

Traversing Linked List Recursively
• Example : Printing data in a Linked List

• What is the base case?
- The base case : if null is reached

•What is the recursive case?
- The recursive case : printList(head.next);

int printList(node head)
{

if (head == null) { // base case: list is empty
return 0;

else { // recursive case
System.out.print(head.data);
return printList(head.next);

}
}

Programming and Data Structures 10

Sample Linked List ADT
List specification

class Node

{

int data = 0;
Node next = null;

}

clas LinkedList

{

Node head = null;

Node InitList(LinkedList list){ … … … }

void AddHead(LinkedList list, int elem) {… … …}

void AddTail(LinkedList list, int elem) {… … …}

int size(LinkedList list) {… … …}

boolean inList(LinkedList l, int elem) {… … …}

void RemoveHead(LinkedList list) {… … …}

... (You can think of other useful functions)

}

Programming and Data Structures 11

Different Linked Lists
• So far we have only been looking at singly linked lists

• There are 3 other types of linked lists:
- circular linked lists :

Start

- doubly linked lists :
Start

null
null

• And of course, circular doubly linked lists

Programming and Data Structures 12

Doubly Linked List
• One shortcoming of singly linked lists is that we can only

move forwards through the list

• A doubly linked list is a linked list which also has pointers
from each element to the preceding element

• Doubly linked lists make manipulation of lists easier

Start

null
null

Programming and Data Structures 13

Doubly Linked Lists in Java

• We need only add an extra line to make our list doubly linked.

• A node in a doubly linked list would look something like this:

class Node
{

int data = 0;
Node next = null;
Node prev = null; // note the extra line

}

Programming and Data Structures 14

Inserting to a DLL

Inserting to a doubly linked list is the almost the same as inserting
to a singly linked list. The only difference is that you have an
extra “previous” pointer to take care of as well as the “next”
pointer.

Start

null
null

?
?

Programming and Data Structures 15

A Stack Implementation

In the following case study we are going to rewrite the
stack implementation using a linked list.
Remember the stack interface:

void InitStack(Stack st)
void Push(Stack st, int elem)
int Pop(Stack st)
int Top(Stack st)

Stack specification

Programming and Data Structures 16

A Stack Implementation (2)
class Node
{

int data = 0;
Node next = null;
Node prev = null;

}

class Stack
{

Node Bottom = null;
Node Top = null;

<< stack methods >>
}

Class Node represents an
element in the stack.

Top points to the top element
of the stack. Bottom keeps track
of the location of the bottom of
the stack

Programming and Data Structures 17

A Stack Implementation (3)
void Init(Stack st)
{

st.Top = null;
st.Bottom = null;

}

void Push(Stack st, int elem)
{

Node new_node = null;
new_node = new Node();
new_node.data = elem;
// Set up the pointers

st->Top.next = new_node;
new_node.next = null;
new_node.prev = st.Top;
st.Top = new_node;

}

Programming and Data Structures 18

A Queue implementation

A queue can also be easily implemented using a doubly linked list:

I’ll leave this as an exercise for you to try.

Front

NULL
NULL

Rear

