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Elementary Graph Theory

• WE will be looking at :
– What is a Graph?
– Adjacency Matrices
– Adjacency Lists
– Breadth First Search
– Depth First Search
– Minimum Spanning Trees; What are they?
– Kruskal’s Algorithm for creating a MST
– Prim’s Algofithm for creating a MST
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A Graph
• A graph can be thought of a collection of vertices (V) and edges (E), so we 

write,
G = (V, E)

• Graphs can be directed, or undirected, weighted or unweighted.

• A directed graph, or digraph, is a graph where the edge set is an ordered pair.  

• That is, edge 1 being connected to edge 2 does not imply that edge 2 is 
connected to edge 1. (i.e. it has direction – trees are special kinds of directed 
graphs)

• An undirected graph is a graph where the edge set in an unordered pair.  

• That is, edge 1 being connected to edge 2 does imply that edge 2 is connected 
to edge 1.
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A Weighted Graph
• A weighted graph is graph which has a value associated with each

edge.  This can be a distance, or cost, or some other numeric value 
associated with the edge.

(a)  A directed graph (b)  An undirected graph
1 2 3 1 2 3

4 5 6 4 5 6
(c)  A weighted graph

1 2 3

4 5 6

2 5

1 4 2
3
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Representing a Graph
• There are two standard ways to represent a graph G = (V,E) in 

computer science
– As a collection of adjacency lists 
– As an adjacency matrix

• Take the following graph
1 2

3
4 5

• We can represent this in two ways
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Adjacency Lists & matrices
• As an adjacency list this is

• As an adjacency matrix this is
1 2 3 4 5

1 0 1 0 1 0
2 1 0 1 1 1
3 0 1 0 0 1
4 1 1 0 0 1
5 0 1 1 1 0

1 2 4 /
2 1 5 3 4 /
3 2 5 /
4 2 5 1 /
5 3 4 2 /
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Adjacency Matrix

• To construct an adjacency matrix we first number 
each vertices in our digraph 1 to n

• The adjacency matrix is then a nxn matrix, in 
which row i and column j is 1 (or true) if vertex j 
is adjacent to vertex i. Otherwise it is 0 (or false)

• Lets have a look at an example…
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Adjacency Matrix : Example
• For a directed graph such as

1 2 3

4 5 6
• The adjacency matrix is 

1 2 3 4 5 6
1 0 1 0 1 0 0
2 0 0 0 0 1 0
3 0 0 0 0 1 1
4 0 1 0 0 0 0
5 0 0 0 1 0 0
6 0 0 0 0 0 0
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Adjacency List
• An adjacency list is a representation of adjacent vertices in the digraph as an 

array of pointers to linked row-lists (from the adjacency matrix).

• The adjacency list for the last example is :

• Adjacency matrices are generally quite sparse so there is a lot of wasted space. 
It is for this reason that the adjacency list representation is usually preferred, as 
it provides a compact way to represent sparse graphs.

• A sparse graph is defined as one for which |E| is much less that |V| squared

• Sparse graphs are very common in real-world situations

1 2 4 /
2 5 /
3 6 5 /
4 2 /
5 4 /
6 /
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Representing Graphs
• An adjacency matrix representation may be preferred when 

the graph is dense, or when we need to be able to tell quickly 
if there is an edge connecting two given vertices.

• If a graph is a weighted graph, then the weight can be stored 
with the vertex in the adjacency list.

• In Java we can do this by adding the extra weight information 
in our class Node (remember this from linked lists?)

• To store the weight in an adjacency matrix, simply store the 
weight instead of a 1 in the entry for vertex i and vertex j
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Searching a Graph
• Breadth-First-Search (BFS) is a search algorithm which forms the basis 

for many important graph algorithms

• Given a graph G = (V, E) and a source vertex s, breadth-first search 
systematically explores the edges of G to discover every vertex that is 
reachable from s

• It also produces a “breadth-first-tree” with root s that contains all such 
reachable vertices

• For any vertex v, reachable from s, the path in the breadth-first tree from 
s to v corresponds to a “shortest path” from s to v in G.  That is, a path 
containing the fewest number of edges

• The algorithm works on both directed and undirected graphs
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Breadth First Search
• The algorithm is called Breadth-First-Search because it discovers all 

vertices at distance k from s before discovering any vertices at distance 
k+1

• Using the BFS we speak of colouring the nodes as they are discovered.

• A white node has not yet been discovered.  A grey node has been 
discovered but may have some adjacent white vertices.  All adjacent 
vertices of a black node have been discovered

• The algorithm we are going to look at assumes the graph is represented 
as an adjacency list

• The algorithm also uses a queue to manage the set of grey vertices
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BFS Algorithm
• The distance from the source s to vertex i is stored in the array d[i]

BFS(G, s)
for each vertex i ∈ V(G) - {s} // Initialise the adjacency list for paths from vertex s

colour[i] = white; d[i] = ∞;        // Set all colours to white and distance to some default
endfor
colour[s] = grey; d[s] = 0; Q = {s};     // Set vertex s to grey , distance to ourselves is 0, join Queue
while Q != empty // While Queue is not empty

i = Q.head; // Vertex i is vertex at head of Queue 
for each j ∈ Adj[i] // For each vertex j which is part of adj. list of vertex i

if colour[j] == white then        // If vertex has not been discovered yet (i.e. colour is white)
colour[j] = grey; // Mark as discovered & possibly more undiscovered adj. vertices.
d[j] = d[i] + 1; // Mark distance from start vertex to this vertex
Enqueue(Q, j); // Add vertex j to the Queue

endif
endfor
Dequeue(Q);  colour[i] = black     // Finished with vertex i so leave Queue, Mark as visited  & no

endwhile // more adj. vertices to vertex i that have not been discovered
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BFS Example (1)

1

∞

0

1

∞

∞

∞

∞

Q

w(1)
r(1)

r s t u

v w x y

1

∞

0

1

2

2

∞

∞

Q

r(1)
t(2)
x(2)

r s t u

v w x y

∞

∞

0

∞

∞

∞

∞

∞

Q

s (0) 

r s t u

v w x y

r s t u

1st time in while loop

i = s(0)

s(0) � w (∞) � r (∞)

j

s (0) 2nd time in while loop

i = w(1)

w(1) � s(0) � t (∞) � x (∞)

j

w (1) Start of 3rd time in while loop

i = r (1)

r (1) � s(0) � v (∞)

j
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BFS Example cont...(2)

1

2

0

1
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2

∞

∞

r s t u

v w x y

Q

t(2)
x(2) 
v(2)

1

2

0

1

2

2

3

∞
v w x y

Q

x(2) 
v(2)
u(3)

1

2

0

1

2
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3

3
v w x y

Q

v(2)
u(3)
y(3)

r s t u

r s t u

r (1) 4th time in while loop

i = t(2)

t(2) � w(1) � x (2) � u (∞)

j

t (2) 5th time in while loop

i = x(2)

x(2) � w(1) � t (2) � y (∞)

j

x (2) 6th time in while loop

i = v(2)

v(2) � r(1)

j
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BFS Example cont... (3)
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Q

∅∅∅∅

r s t u

v (2) 7th time in while loop

i = u(3)

u(3) � t(2) � y(3)

j

u (3) 8th time in while loop

i = y(3)

y(3) � x(2) � u(3)

j

At End of 8th time in while loopy (3)
y(3) leaves the Queue – the queue 
is now empty and hence we exit the
while loop and algorithm ends. All 
vertices are searched Breadth first.
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Analysis of BFS on G = (V,E)
• After initialisation, no vertex is ever whitened, so each vertex is enqueued

only once, and hence dequeued only once.

• The operations of enqueueing and dequeueing take O(1) time, so the total 
time devoted to queue operations is O(j)

• The adjacency list of each vertex is scanned only when the vertex is 
dequeued, the adjacency list of each vertex is scanned at most once.

• Since the sum of the lengths of all the adjacency lists is E, at most O(E) 
time is spent in scanning the adjacency lists.

• The total running time of BFS is O(j + E)

• Breadth First Search runs in time linear in the size of the adjacency list G
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Depth First Search
• DFS is the opposite of BFS. Instead or search breadth first, as the name suggests we are now 

searching by going down the depth of the graph first.

• DFS also runs in O(j+E) time.  Instead of using a queue, however, the DFS can use a stack or 
can be implemented recursively. Again d[j] represents distance from vertex j to start vertex s.  

DFS(G, s)
for each vertex i ∈ V[G] - {s} // initialise all vertices on path of vertex s

colour(i) = white, d[i] = ∞ // set colours to white and distance to some default
endfor
Stack.push(s),  d[s] = 0 // push start vertex s onto stack and set distance to 0
while Stack != empty // While stack is not empty

i = Stack.Pop(); colour(i) = black // Vertex j is whatever vertex at top of stack is, Mark as black
for each j ∈ adj[i] // for all vertex i that is part of adj. list with vertex j at start

if colour(j) == white then // if not yet discovered
colour(j) = grey; // Mark as discovered but possibly more undiscovered 
d[j] = d[i] + 1; Stack.push(j) // vertices, Mark the distance of vertex i and push onto stack

endif
endfor

endwhile
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DFS Example (1)
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1st time in while loop

i = s(0)

s(0) � r (∞) � w (∞)

j

2nd time in while loop

i = r(1)

r(1) � v (∞) � s (0)

j

pop

pop

3rd time in while loop

i = v(2)

v(2) � r (1)

j

pop
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DFS Example cont…(2)

1

2

0

1

2

2

3

∞
v w x y

Stack

u(3)
x(2)

r s t u

1

2

0

1

∞

∞

∞

∞

r s t u

v w x y

Stack

w(1)

1

2

0

1

2

2

∞

∞

r s t u

v w x y

Stack

t(2)
x(2)

4th time in while loop

i = w(1)

w(1) � s (0) � t (∞) � x (∞)

j

pop

5th time in while loop

i = t(2)

t(2) � w(1) � x (2) � u (∞)

j

pop

6th time in while loop

i = u(3)

u(3) � t(2) � y (∞)

j

pop
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DFS Example cont… (3)
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0
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Stack

∅∅∅∅
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4

7th time in while loop

j

pop
i = y(4)

y(4) � u(3) � x (2)

8th time in while loop

j

pop
i = x(3)

x(3) � w(1) � t (2) � y (4)

At End of 8th time in while loop

• The last vertex gets popped off the
stack. The stack is now empty and the
algorithm ends. All vertices are searched 
from the Depth first.



Programming and Data Structures 21

Summing up BFS & DFS
• We can look at BFS is like an army of searchers fanning out.

• We can look at DFS is like a single searcher probing as deeply as 
possible, retreating only when hitting dead ends.

• Many useful algorithms utilise BFS and DFS
– Example: Many network / routing problems (e.g. shortest path , cheapest 

path problems etc.)

• In general we use BFS algorithms for finding shortest path problems as 
DFS doesn’t really do this for us. However, DFS is used elsewhere 
where BFS is not appropriate to the problem (i.e. possible longest path 
problems).
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Minimum Spanning Trees - Introduction
• In electronic circuitry, we often want to make the pins of several components 

electrically equivalent by connecting them.

• To interconnect a set of n pins, we can use an arrangement of n-1 wires, each 
connecting two pins.  

• Of all such arrangements, the one that uses the least amount of wire is 
usually the most desirable

• This situation can be modeled as a connected, undirected graph G = (V, E), 
where V is the set of pins, E is the set of possible connections between pairs 
of pins.

• We want to find the tree which connects all vertices and minimises the sum 
of the weights on its edges
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Minimum Spanning Tree
• Here we will look at two algorithms to find the minimum spanning tree 

of an undirected weighted graph.

• These algorithms use similar approaches, but work in very different 
ways

• The following is an example of a graph, with the bold lines outlining 
the  Minimum Spanning Tree

a

b c

h

d

fg

ei

4

8 7

11

8
7

1
6

2
4

2

14

9

10
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Algorithms
• The two algorithms we will look at use a greedy strategy

• The algorithms differ  in how they apply this approach

• The basic idea is that we start with an empty tree and add what we call “safe edges”.

• We continue this until all nodes are included in the tree

• By a “safe” edge we mean one that does not form a cycle and one which will be an edge in 
the Minimum Spanning Tree

• Extra Info :
– If a vertex of a graph has a path back to itself it is said to have a “Hamiltonian Cycle”.
– If a path exists between two vertices of a graph such that we visit every vertex of the graph on the 

way the once only, then we say that a “Hamiltonian Path” exists.
– Hamiltonian Path problems exist in may common day problems (ie Chip board analysis, Network 

routing, DNA strand computation etc. – which by the way all boil down to the Traveling Salesman 
problem – an NP (NP-complete problem)).
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Kruskal’s Algorithm

• In Kruskal’s algorithm the edges are sorted 
in increasing order and the edges with least 
weight are added one at a time

• As each edge is added the algorithm checks 
if adding it will create a cycle in tree.  If the 
edge will not cause a cycle then add it to the 
set of safe edges
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Kruskal’s Algorithm

MST-Kruskal(G, w)
A = {0} // Initialise edge list
for each vertex v ∈ V[G] // Make vertex sets out of all vertices 

Make-Set(v) // in the graph
endfor

sort the edges of E by nondecreasing weight w

for each edge (u, v) ∈ E, by nondecreasing weight
if Find-Set(u) != Find-Set(v) then // if sets not the same (i.e. not a cycle)

A = A ∪ {(u, v)} // Put edge into edge list
Union(u, v) // Join both sets up into the 1 set

endif
endfor
return A // return list of edges

endalg

• In this algorithm, let A be the list of edges which are basically a set of non-cylic 
vertices that make up that edge
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Kruskal Example
• Start with edge of least weight, If not a cycle add it
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Kruskal Example cont.
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Kruskal Discussion
• This is an abstract view of the operations involved.  How we 

implement the Make-Set, Find-Set and Union operations are issues to 
be addressed.

• We need to develop data structures to model this.  The situation is that 
we want to have a way of representing a disjoint set.

• Each set can be represented by a linked list.

• However, here we are interested in the overall approach rather than the 
implementation details.

• An efficient implementation of this algorithm runs in O(E lg E) time.
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Problems with Kruskal
• Kruskal’s algorithm grows a series of trees which are disjoint

• Growing a set of disjoint trees may be a problem in some applications

• Kruskal also continues checking edges even when all nodes are 
inserted

• Checking the edges can be inefficient in that a graph can have up V2

edges

• Many of these edges will be creating cycles

• Can we have an algorithm that is based on looking at nodes rather than 
edges?
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Prim’s Algorithm
• Prim’s algorithm has the property that the edges in the set A always form a single tree.

• Prim’s algorithm finishes when all vertices are included in the Minimum Spanning Tree.

• Both of these properties address the issues raised as disadvantages with Kruskal

• Again the strategy is a greedy one.

• The algorithm starts with an arbitrary root vertex r and grows the tree until it spans all the 
vertices in V.  

– The initial step is to put all vertices onto a priority queue based on a key that is the 
minimum weight of any edge connecting v to a vertex in the tree.

– The source vertex has 0 as its key, so it is chosen first and its adjacency list explored for the 
lightest edge which is added to the tree.

– At all times the lightest edge between the included vertices and the vertices not included in 
the tree is added. 

– This continues until all vertices are removed from the priority queue.
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Prim’s Algorithm

MST-Prim(G, w, r)
Q = V[G] // Put vertices in graph into priority queue
for each u ∈ Q // For each vertex u in the priority queue

key[u] = ∞ // Init minimum weight key for vertex u to infinity
endfor

key[r] = 0 // set source vertex minimum weight key to zero
parent[r] = nil // source vertex has no parent – it is the root node

while Q != nil // While priority queue is not empty
u = Extract-Min(Q) // Extract next vertex from Pqueue to MST, let it be u

for each v ∈ Adj[u] // For all vertex v part of adj. list of u
if v ∈ Q and w(u, v) < key[v] then      // If v is still in queue (i.e. not part of MST yet)  & weight of 

// edge u,v is less than current min key associated with v
parent[v] = u // u is the parent of v
key[v] = w(u,v) // Set min edge key for v to weight of edge u,v

endif
endfor

endwhile // Each time we loop back up, remember that the priority
Endalg // is resorted in accordance to the new weighted keys!!

• At the end of the following algorithm, “parent” holds the parent – child relationship between each 
vertex in the MST. (i..e it effectively can be used to describe the tree for us)
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Prim Example
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Discussion of Prim
• The algorithm stores the vertices in a priority queue based on minimum weight

• This weight represents the weight on an edge connecting that vertex to the 
MST being grown

• Initially these are set to infinity

• When a vertex is removed from the queue its adjacency list is checked and the 
correct weights inserted

• The queue always has weights on the edges adjacent to the existing MST

• The performance of Prim’s algorithm depends on how we implement the 
priority queue.

• If we implement it as a heap, then the running time is O(E lg V).
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MST Summary
• A Minimum Spanning Tree is a tree which connects all vertices in a 

graph and minimises the sum of the weights on its edges

• This has many useful applications

• The problem can be solved using a greedy strategy

• Kruskal’s algorithm solves by sorting the edges

• Prim’s algorithm solves by growing the tree from an arbitrary root by 
taking the shortest edge connecting the tree to the yet to be included 
vertices

• Prim is slightly more efficient than Kruskal


