
Programming and Data Structures 1

Linear Data Structures

A data structure is said to be linear if its elements form a
sequence or a linear list.

Examples:
• Arrays
• Linked Lists
• Stacks, Queues

Programming and Data Structures 2

Operations on linear structures

• Traversal: Travel through the data structure

• Search: Traversal through the data structure for a given element

• Insertion: Adding new elements to the data structure

• Deletion: Removing an element from the data structure

• Sorting: Arranging the elements in some type of order

• Merging: Combining two similar data structures into one

Programming and Data Structures 3

Arrays
• Definition: A consecutive group of memory locations that all

have the same name and of identical type

• Visual Example: grades for 6 students:

65 32 76 91 55 86Grades

Grades[0] … … … … … Grades[5]

• Note that all array index references in Java start at 0

Programming and Data Structures 4

Array Terminology & Declaration

type ArrayName[] = new type[<array size>];

• Example:
float Grades[] = new float[7];

•Grades is an array of type float with size 7.

•Grades[0], Grades[1], …, Grades[6] are the
elements of the Grades; each is of type float.

• 0,1,2,…,6 are the indices of the array. Also called subscripts.
(Note that the indices start at 0 and NOT 1)

• During array declaration we may also put the brackets before the variable name:
i.e. float []Grades = new float[7];

• Array Declaration

Programming and Data Structures 5

Initialising Arrays

• Arrays may be initialised in the following ways:

- int n[] = { 2, 4, 6, 8, 10 };
creates and initialises a five element array with specified values

- int n[] = new int[10];
creates and initialises a 10 element array of zeros.

• Note : if data type is a non primitive type then above expression would
create and initialise a 10 element array of nulls

Programming and Data Structures 6

Some Things To Note
• You Cannot assign data to arrays like such :

list = { 1, 2, 3, 4, 5}; Wrong!

• Array elements are indexed between zero and the size of the array minus one

• Arrays can have any type

• You can check the size of your array by calling the length member variable.

e.g. int anArray[] = new int[5];
System.out.println(anArray.length);

The above example will print out 5 to the terminal

Programming and Data Structures 7

Array Parameters
• You can pass arrays into functions as part of the function parameter like

any other variable.

• e.g.
int results = new int[20];

:
printResults(results);

• The function prototype for “printResults” was defined as such :

void printResults(int SomeArray[]);

• Note :
- Arrays in Java are treated like objects thus all arrays are passed in by reference.

- We don’t need to pass in the array size since we can get this from the length method.

Programming and Data Structures 8

Traversing linear arrays
• Usual way to traverse a linear 1-d array is to use a loop.
• e.g. Getting the overall average grade

Pseudo-Code : Get_Average(Array[])
Begin

index = 0;
sum = 0;
for index = 0 to index = ArraySize -1
{

sum = sum + Array[index];
}
average = sum / ArraySize;

End

Programming and Data Structures 9

Sample Java Code for example
/*
* function which calculates and returns the average overall grade
*/
float Get_Average(float Grades[]);
{

float sum = 0; // initialise the sum variable

// We use a for loop for traversal here because
// it’s the handiest loop for what we want done

for(int index = 0; index < Grades.length; index++)
{

sum += Grades[index];
}

// Return the average
return sum/Grades.length;

}

Programming and Data Structures 10

Inserting elements
Adding an element to an array/list at an arbitrary position without
overwriting the previous values requires that you move all elements
"below" that position:

3
7
9
13
22

1
2
3
4
5
6

3
7
9

13
22

1
2
3
4
5
6

3
7
9

13
22

1
2
3
4
5
6

12

1212

Programming and Data Structures 11

Algorithm
Algorithm: Insert(List[], position, element, ArraySize)

1. Start at the top element of the array.

2. Traverse the array backwards so as not to overwrite any previous data.

3. Replace the current element that we are on with the element before it.

4. Stop once we have reached our insertion position in the array.

5. Insert our data into that position

Programming and Data Structures 12

Sample Pseudo-Code

Pseudo-Code: Insert(List[], position, element)

Begin
for index = ArraySize-1 to index = position+1
{

List[index] = List[index-1];
}

List[position] = element;
End

Programming and Data Structures 13

Sample Java Code

// function definition for insert
void insert(int list[], int pos, int elem)
{

// we are assuming that ‘pos’ is the array position
// with the lower bound starting at zero and not one

for(int i = list.length-1; i > pos ; i--)
list[i] = list[i-1];

list[pos] = elem; // insert the element
}

Programming and Data Structures 14

Multidimensional Arrays
• Arrays can be more than one dimensional.

• Used to represent tables of data, etc.

• Declaration of 2-d array :
int grid[][] = new int[5][6];

• This declaration is interpreted as an array consisting of 5 rows and 6 columns

• Another way of declaring a 2-d array :

int grid[][] = new int[2][];
grid[0] = new int[2];
grid[1] = new int[2];

• e.g. for 3-d array :
int space = new int[100][100][100];

• Same as declaring a 2x2 array
except we are doing it one row
at a time here

Programming and Data Structures 15

Initialising Multidimensional Arrays
• e.g.

int array1[][] = {{1,2,3}, {4,5,6}};
int array2[][] = new int[3][2];
int array3[][] = {{1,2}, {4}};

• If we were to print out the values of these arrays by row we would get :

array1 array2 array3
1 2 3 0 0 0 1 2
4 5 6 0 0 4

• Note : If there are not initialisers for a given row, primitive types are
initialised to zero and non primitive types are initialised to null.

Programming and Data Structures 16

Multidimensional Arrays as Parameters

• e.g.
void warp(int space[][][]);

• Same as declaring a one dimensional array as parameters except
that we must remember to include extra square brackets for
each additional dimension.

