1. Абстракция
Abstraction is the process or result of generalization by reducing the information content of a concept or an observable phenomenon, typically in order to retain only information which is relevant for a particular purpose. For example, abstracting a leather soccer ball to a ball retains only the information on general ball attributes and behaviour. Similarly, abstracting happiness to an emotional state reduces the amount of information conveyed about the emotional state. Computer scientists use abstraction to understand and solve problems and communicate their solutions with the computer in some particular computer language.

In computer science, the mechanism and practice of abstraction reduce and factor out details so that one can focus on a few concepts at a time.

The following English definition of abstraction helps to understand how this term applies to computer science, IT and objects:

abstraction - a concept or idea not associated with any specific instance[1]
Roughly speaking, abstraction can apply to control or to data: Control abstraction is the abstraction of actions while data abstraction is that of data structures (e.g. datatypes [vectors and pixels]).

· Control abstraction in the case of structured programming involves the use of subprograms and formatted control flows to simulate desired concepts of surreal features or interactions in reality or in some abstract world

· Data abstraction allows handling data bits in meaningful ways. For example, it is the basic motivation behind datatype.

One can regard object-oriented programming as an attempt to abstract both data and code.

Different programming languages provide different types of abstraction, depending on the intended applications for the language. For example:

· In object-oriented programming languages such as C++, Object Pascal, or Java, the concept of abstraction has itself become a declarative statement - using the keywords virtual (in C++) or abstract (in Java). After such a declaration, it is the responsibility of the programmer to implement a class to instantiate the object of the declaration.

Control abstraction
Main article: Control flow
Programming languages offer control abstraction as one of the main purposes of their use. Computer machines understand operations at the very low level such as moving some bits from one location of the memory to another location and producing the sum of two sequences of bits. Programming languages allow this to be done in the higher level

Data abstraction
Main article: Abstract data type
Data abstraction enforces a clear separation between the abstract properties of a data type and the concrete details of its implementation. The abstract properties are those that are visible to client code that makes use of the data type--the interface to the data type--while the concrete implementation is kept entirely private, and indeed can change, for example to incorporate efficiency improvements over time. The idea is that such changes are not supposed to have any impact on client code, since they involve no difference in the abstract behaviour.

For example, one could define an abstract data type called lookup table which uniquely associates keys with values, and in which values may be retrieved by specifying their corresponding keys. Such a lookup table may be implemented in various ways: as a hash table, a binary search tree, or even a simple linear list. As far as client code is concerned, the abstract properties of the type are the same in each case.

Of course, this all relies on getting the details of the interface right in the first place, since any changes there can have major impacts on client code. As one way to look at this: the interface forms a contract on agreed behaviour between the data type and client code; anything not spelled out in the contract is subject to change without notice.

Abstraction in object oriented programming
Main article: Object (computer science)
In object-oriented programming theory, abstraction involves the facility to define objects that represent abstract "actors" that can perform work, report on and change their state, and "communicate" with other objects in the system. The term encapsulation refers to the hiding of state details, but extending the concept of data type from earlier programming languages to associate behavior most strongly with the data, and standardizing the way that different data types interact, is the beginning of abstraction. When abstraction proceeds into the operations defined, enabling objects of different types to be substituted, it is called polymorphism. When it proceeds in the opposite direction, inside the types or classes, structuring them to simplify a complex set of relationships, it is called delegation or inheritance.

Object-oriented design
Main article: Object-oriented design
Decisions regarding what to abstract and what to keep under the control of the coder become the major concern of object-oriented design and domain analysis—actually determining the relevant relationships in the real world is the concern of object-oriented analysis or legacy analysis.

In computing, an abstract data type (ADT) or abstract data structure is a mathematical model for a certain class of data structures that have similar behavior; or for certain data types of one or more programming languages that have similar semantics. An ADT is defined indirectly, only by the operations that may be performed on it and by mathematical constraints on the effects (and possibly cost) of those operations .

For example, an abstract stack data structure could be defined by two operations: push, that inserts some data item into the structure, and pop, that extracts an item from it; with the constraint that each pop always returns the most recently pushed item that has not been popped yet. When analyzing the efficiency of algorithms that use stacks, one may also specify that both operations take the same time no matter how many items have been pushed into the stack, and that the stack uses a constant amount of storage for each element.

ADTs are purely theoretical entities, used (among other things) to simplify the description of abstract algorithms, to classify and evaluate data structures, and to formally describe the type systems of programming languages. However, an ADT may be implemented by specific data types or data structures, in many ways and in many programming languages; or described in a formal specification language. ADTs are often implemented as modules: the module's interface declares procedures that correspond to the ADT operations, sometimes with comments that describe the constraints. This information hiding strategy allows the implementation of the module to be changed without disturbing the client programs. Abstract data types are also an important conceptual tool in object-oriented programming and design by contract methodologies for software development.

     Инвариант е всяка величина, свързана с определена структура, която остава постоянна, когато над тази структура се извършват определени операции. Така например, броят на картите в едно тесте е инвариантен спрямо сеченето му и размесването му в розетка, а обема на един масив е инвариантен спрямо поставянето в него на нови елементи (докато не един вектор, напротив, не е). Инвариантите имат значение при вземането на избори за дизайна на различни структури от данни и изследването на тяхното поведение.

    Интерфейс и реализация – пише в книгата на Бейли.

2. Стек, опашка, защитно програмиране.
In computer science, a data structure is a particular way of storing and organizing data in a computer so that it can be used efficiently
A data structure is said to be linear if its elements form a

sequence or a linear list.

Examples:

• Arrays

• Linked Lists

• Stacks, Queues
Operations on linear structures

• Traversal: Travel through the data structure

• Search: Traversal through the data structure for a given element

• Insertion: Adding new elements to the data structure

• Deletion: Removing an element from the data structure

• Sorting: Arranging the elements in some type of order

• Merging: Combining two similar data structures into one

In computer science, a stack is an abstract data type and data structure based on the principle of Last In First Out (LIFO).

A stack is an ordered list of items.

Items are removed from this list in the reverse order to the order of their addition.

Any abstract data type can be an item or element of this list.

There are two main operations: push and pop. The push operation adds (stores) to the list. Due to practical memory limits, stacks are often of a particular size, so this operation must check that the stack is not full, otherwise it will fail. The pop operation removes (deletes) an item from the list, AND returns or exports this item value to the calling program. The pop operation must check to see if the stack is not empty, otherwise it will fail.

Other operations on the stack are optional extras.

A stack's data structure can be implemented by other data structures such as arrays, linked lists and trees.

LIFO is an acronym which stands for last in, first out. In computer science and queueing theory this refers to the way items stored in some types of data structures are processed. By definition, in a LIFO structured linear list, elements can be added or taken off from only one end, called the "top".[1] A LIFO structure can be illustrated with the example of a narrow, crowded elevator with a small door. When the elevator reaches its destination, the last people to get on have to be the first to get off.

As an abstract data type, the stack is a container of nodes and has two basic operations: push and pop. Push adds a given node to the top of the stack leaving previous nodes below. Pop removes and returns the current top node of the stack. A frequently used metaphor is the idea of a stack of plates in a spring loaded cafeteria stack. In such a stack, only the top plate is visible and accessible to the user, all other plates remain hidden. As new plates are added, each new plate becomes the top of the stack, hiding each plate below, pushing the stack of plates down. As the top plate is removed from the stack, they can be used, the plates pop back up, and the second plate becomes the top of the stack. Two important principles are illustrated by this metaphor: the Last In First Out principle is one; the second is that the contents of the stack are hidden. Only the top plate is visible, so to see what is on the third plate, the first and second plates will have to be removed. This can also be written as FILO-First In Last Out, i.e. the record inserted first will be popped out at last.
In modern computer languages, the stack is usually implemented with more operations than just "push" and "pop". The length of a stack can often be returned as a parameter. Another helper operation top[1] (also known as peek) can return the current top element of the stack without removing it from the stack.

A queue (pronounced /kjuː/) is a particular kind of collection in which the entities in the collection are kept in order and the principal (or only) operations on the collection are the addition of entities to the rear terminal position and removal of entities from the front terminal position. This makes the queue a First-In-First-Out (FIFO) data structure. In a FIFO data structure, the first element added to the queue will be the first one to be removed. This is equivalent to the requirement that whenever an element is added, all elements that were added before have to be removed before the new element can be invoked. A queue is an example of a linear data structure.

Queues provide services in computer science, transport and operations research where various entities such as data, objects, persons, or events are stored and held to be processed later. In these contexts, the queue performs the function of a buffer.

Queues are common in computer programs, where they are implemented as data structures coupled with access routines, as an abstract data structure or in object-oriented languages as classes. Common implementations are circular buffers and linked lists.

Common operations from the C++ Standard Template Library include the following:

bool empty()

Returns True if the queue is empty, and False otherwise.

T& front()

Returns a reference to the value at the front of a non-empty queue. There is also a constant version of this function, const T& front().

void dequeue()

Removes the item at the front of a non-empty queue.

void enqueue(const T& foo)

Inserts the argument foo at the back of the queue.

int size()

Returns the total number of elements in the queue.

The defining attribute of a queue data structure is the fact that allows access to only the front and back of the structure. Furthermore, elements can only be removed from the front and can only be added to the back. In this way, an appropriate metaphor often used to represent queues is the idea of a checkout line

Queue implementation
Theoretically, one characteristic of a queue is that it does not have a specific capacity. Regardless of how many elements are already contained, a new element can always be added. It can also be empty, at which point removing an element will be impossible until a new element has been added again.

A practical implementation of a queue e.g. with pointers of course does have some capacity limit, that depends on the concrete situation it is used in. For a data structure the executing computer will eventually run out of memory, thus limiting the queue size. Queue overflow results from trying to add an element onto a full queue and queue underflow happens when trying to remove an element from an empty queue.

FIFO is an acronym for First In, First Out, an abstraction in ways of organizing and manipulation of data relative to time and prioritization. This expression describes the principle of a queue processing technique or servicing conflicting demands by ordering process by first-come, first-served (FCFS) behaviour: what comes in first is handled first, what comes in next waits until the first is finished, etc.
Exception handling is a programming language construct or computer hardware mechanism designed to handle the occurrence of exceptions - special conditions that change the normal flow of execution.

Unlike signals and event handlers that are part of the normal program flow, exceptions are typically used to signal that something went wrong (e.g. a division by zero occurred or a required file was not found). Exceptions are raised or thrown (initiated) by either the hardware or the program itself by using a special command.

In general, an exception is handled (resolved) by saving the current state of execution in a predefined place and switching the execution to a specific subroutine - an exception handler. Depending on the situation, the handler may later resume the execution at the original location using the saved information. For example, a page fault will usually allow the program to be resumed, while a division by zero might not be resolvable transparently.

From the processing point of view, hardware interrupts are similar to resumable exceptions, though they are typically unrelated to the user's program flow.

From the point of view of the author of a routine, raising an exception is a useful way to signal that a routine could not execute normally. For example, when an input argument is invalid (a zero denominator in division) or when a resource it relies on is unavailable (like a missing file, or a hard disk error). In systems without exceptions, routines would need to return some special error code. However, this is sometimes complicated by the semipredicate problem, in which users of the routine need to write extra code to distinguish normal return values from erroneous ones.

Java
try {
   // Normal execution path
} catch (ExampleException ee) {
   //  deal with the ExampleException
} finally {
   // This optional section is executed upon termination of any of the try or catch blocks above
}
The Call Stack Explained

This text refers to the concept the "call stack" in several places. By the call stack is meant the sequence of method calls from the current method and back to the Main method of the program. If a method A calls B, and B calls C then the call stack looks like this: 

    A

    B

    C

When method C returns the call stack only contains A and B. If B then calls the method D, then the call stack looks like this: 

    A

    B

    D

Understanding the call stack is important when learning the concept of exception propagation. Exception are propagated up the call stack, from the method that initially throws it, until a method in the call stack catches it. More on that later. 

Throwing Exceptions

If a method needs to be able to throw an exception, it has to declare the exception(s) thrown in the method signature, and then include a throw-statement in the method. Here is an example: 

    public void divide(int numberToDivide, int numberToDivideBy)

    throws BadNumberException{

        if(numberToDivideBy == 0){

            throw new BadNumberException("Cannot divide by 0");

        }

        return numberToDivide / numberToDivideBy;

    }

When an exception is thrown the method stops execution right after the "throw" statement. Any statements following the "throw" statement are not executed. In the example above the "return numberToDivide / numberToDivideBy;" statement is not executed if a BadNumberException is thrown. The program resumes execution when the exception is caught somewhere by a "catch" block. Catching exceptions is explained later. 

You can throw any type of exception from your code, as long as your method signature declares it. You can also make up your own exceptions. Exceptions are regular Java classes that extends java.lang.Exception, or any of the other built-in exception classes. If a method declares that it throws an exception A, then it is also legal to throw subclasses of A. 

Catching Exceptions

If a method calls another method that throws checked exceptions, the calling method is forced to either pass the exception on, or catch it. Catching the exception is done using a try-catch block. Here is an example: 

    public void callDivide(){

        try {

            int result = divide(2,1);

            System.out.println(result);

        } catch (BadNumberException e) {

            //do something clever with the exception

            System.out.println(e.getMessage());

        }

        System.out.println("Division attempt done");

    }

The BadNumberException parameter e inside the catch-clause points to the exception thrown from the divide method, if an exception is thrown. 

If no exeception is thrown by any of the methods called or statements executed inside the try-block, the catch-block is simply ignored. It will not be executed. 

If an exception is thrown inside the try-block, for instance from the divide method, the program flow of the calling method, callDivide, is interrupted just like the program flow inside divide. The program flow resumes at a catch-block in the call stack that can catch the thrown exception. In the example above the "System.out.println(result);" statement will not get executed if an exception is thrown fromt the divide method. Instead program execution will resume inside the "catch (BadNumberException e) { }" block. 

If an exception is thrown inside the catch-block and that exception is not caught, the catch-block is interrupted just like the try-block would have been. 

When the catch block is finished the program continues with any statements following the catch block. In the example above the "System.out.println("Division attempt done");" statement will always get executed. 

Propagating Exceptions

You don't have to catch exceptions thrown from other methods. If you cannot do anything about the exception where the method throwing it is called, you can just let the method propagate the exception up the call stack to the method that called this method. If you do so the method calling the method that throws the exception must also declare to throw the exception. Here is how the callDivide() method would look in that case. 

    public void callDivide() throws BadNumberException{

        int result = divide(2,1);

        System.out.println(result);

    }

Notice how the try-catch block is gone, and the callDivide method now declares that it can throw a BadNumberException. The program execution is still interrupted if an exception is thrown from the divide method. Thus the "System.out.println(result);" method will not get executed if an exception is thrown from the divide method. But now the program execution is not resumed inside the callDivide method. The exception is propagated to the method that calls callDivide. Program execution doesn't resume until a catch-block somewhere in the call stack catches the exception. All methods in the call stack between the method throwing the exception and the method catching it have their execution stopped at the point in the code where the exception is thrown or propagated. 

Още тук:

http://tutorials.jenkov.com/java-exception-handling/basic-try-catch-finally.html
и за напреднали:

http://tutorials.jenkov.com/java-exception-handling/exception-hierarchies.html
3. Вектор
За векторите има разказано много в книгата на Бейли.

За линейните структури данни има в презентацията Arrays.pdf  и вече го има преписано в предишния въпрос. За разликите между статичните и изменяемите структури данни има в презентацията Linked_lists.pdf. Ето:
Static vs. Dynamic Data Structures

• Static data structures such as arrays allow

- fast access to elements

- expensive to insert/remove elements

- have fixed, maximum size

• Dynamic data structures such as linked lists allow

- fast insertion/deletion of element

- but slower access to elements

- have flexible size
In computer science, a static data structure is a data structure created for an input data set which is not supposed to change within the scope of the problem. When a single element is to be added or deleted, the update of a static data structure incurs significant costs, often comparable with the construction of the data structure from scratch. In real applications, dynamic data structures are used, which allow for efficient updates when data elements are inserted or deleted.

За вектор има много в книгата на Бейли. Основните операции ги пишем във всеки интерфейс, много са и само трябва да се поизброят малко и да се каже какво правят, и може би как се различава действието им в различните структури (например add (Object item) действа по доста особен начин за Set – ако елемента го има вече, не го добавя).

4. Множество
Interfaces may be extended. Here, we have a possible definition of what it

means to be a Set:

Set

public interface Set extends Structure

{

public void addAll(Structure other);

// pre: other is non-null

// post: values from other are added into this set
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public boolean containsAll(Structure other);

// pre: other is non-null

// post: returns true if every value in set is in other

public void removeAll(Structure other);

// pre: other is non-null

// post: values of this set contained in other are removed

public void retainAll(Structure other);

// pre: other is non-null

// post: values not appearing in the other structure are removed

}

A Set requires several set-manipulation methods—addAll (i.e., set union) retain-

All (set intersection), and removeAll (set difference)—as well as the methods

demanded by being a Structure.
In computer science, a set is an abstract data structure that can store certain values, without any particular order, and no repeated values. It is a computer implementation of the mathematical concept of a finite set.

Some set data structures are designed for static sets that do not change with time, and allow only query operations — such as checking whether a given value is in the set, or enumerating the values in some arbitrary order. Other variants, called dynamic or mutable sets, allow also the insertion and/or deletion of elements from the set.

A set can be implemented in many ways. For example, one can use a list, ignoring the order of the elments and taking care to avoid repeated values. Sets are often implemented using various flavors of trees, tries, hash tables, and more.

A set can be seen as an associative array or container, in which the value of each key-value pair is void (i.e. the unit type).

Typical operations that may be provided by a static set structure S are

· element_of(x,S): checks whether the value x is in the set S.

· empty(S): checks whether the set S is empty.

· size(S): returns the number of elements in S.

· enumerate(S): yields the elements of S in some arbitrary order.

· pick(S): returns an arbitrary element of S.

· build(x1,x2,…,xn,): creates a set structure with values x1,x2,…,xn.

The enumerate operation may return a list of all the elements, or an iterator, a procedure object that returns one more value of S at each call.

Dynamic set structures typically add:

· create(n): creates a new set strcuture, initially empty but capable of holding up to n elements.

· add(S,x): adds the element x to S, if it is not there already.

· delete(S,x): removes the element x from S, if it is there.

· capacity(S): returns the maximum number of values that S can hold.

Some set structures may allow only some of these operations. The cost of each operation will depend on the implementation, and possibly also on the particular values stored in the set, and the order in which they are inserted.

There are many other operations that can (in principle) be defined in terms of the above, such as:

· pop(S): returns an arbitrary element of S, deleting it from S.

· find(S, P): returns an element of S that satisfies a given predicate P.

· clear(S): delete all elements of S.

In particular, one may define the Boolean operations of set theory:

· union(S,T): returns the union of sets S and T.

· intersection(S,T): returns the intersection of sets S and T.

· difference(S,T): returns the difference of sets S and T.

· subset(S,T): a predicate that tests whether the set S is a subset of set T.

Sets can be implemented using various data structures, which provide different time and space tradeoffs for various operations. Some implementations are designed to improve the efficiency of very specialized operations, such as nearest or union. Implementations described as "general use" typically strive to optimize the belongs, insert, and delete operation.

Other popular methods include arrays. 

5. Интерфейси, наследяване.
Тука май е най-добре да се чете главата от Бейли A Design Method, и да се погледнат неговите файлове с интерфейсите от въпроса в конспекта. Също, дефиниции и синтаксис на интерфейс и абстрактен клас:
Interface generally refers to an abstraction that an entity provides of itself to the outside. This separates the methods of external communication from internal operation, and allows it to be internally modified without affecting the way outside entities interact with it, as well as provide multiple abstractions of itself.

the inheritance of an interface, which simply defines the methods that must be present.

An interface in the Java programming language is an abstract type that is used to specify an interface (in the generic sense of the term) that classes must implement. Interfaces are declared using the interface keyword, and may only contain method signatures and constant declarations (variable declarations which are declared to be both static and final). An interface may never contain method definitions.

As interfaces are implicitly abstract, they cannot be directly instantiated except when instantiated by a class which implements the said interface. The class must implement all of the methods described in the interface, or be an abstract class. Object references in Java may be specified to be of an interface type; in which case they must either be null, or be bound to an object which implements the interface.

One benefit of using interfaces is that they simulate multiple inheritance. All classes in Java (other than java.lang.Object, the root class of the Java type system) must have exactly one base class; multiple inheritance of classes is not allowed. However, a Java class/interface may implement/extend any number of interfaces. An interface may not implement an interface.

Overview
Interfaces are used to encode similarities which classes of various types share, but do not necessarily constitute a class relationship. For instance, a human and a parrot can both whistle. However, it would not make sense to represent Humans and Parrots as subclasses of a Whistler class. Rather they would most likely be subclasses of an Animal class (likely with intermediate classes), but both would implement the Whistler interface.

Another use of interfaces is being able to use an object without knowing its type of class, but rather only that it implements a certain interface. For instance, if one were annoyed by a whistling noise, one may not know whether it is a human or a parrot, because all that could be determined is that a whistler is whistling. In a more practical example, a sorting algorithm may expect an object of type Comparable. Thus, it knows that the object's type can somehow be sorted, but it is irrelevant what the type of the object is. The call whistler.whistle() will call the implemented method whistle of object whistler no matter what class it has, provided it implements Whistler.

For example:

  interface Bounceable

  {
      void setBounce();/*Interface methods are by default public and

                                          abstract; methods in an interface end

                                          with a semicolon, not with a curly brace.*/  

  }
и подробния синтаксис е обяснен тук:

http://en.wikipedia.org/wiki/Interface_(Java)
In software engineering, an abstract type is a type in a nominative type system which is declared by the programmer. It has at least one method or property that contains members which are also shared members of some declared subtype. In many object oriented programming languages, abstract types are known as abstract base classes, interfaces, traits, mixins, flavors, or roles. Note that these names refer to different language constructs which are (or may be) used to implement abstract types.

Two overriding characteristics of abstract classes is that their use is a design issue in keeping with the best object oriented programming practices, and by their nature are unfinished. Similar to an interface class
Abstract classes can be created, signified, or simulated in several ways:

· By use of the explicit keyword abstract in the class definition, as in Java.

Abstract Methods and Classes

An abstract class is a class that is declared abstract—it may or may not include abstract methods. Abstract classes cannot be instantiated, but they can be subclassed. 

An abstract method is a method that is declared without an implementation (without braces, and followed by a semicolon), like this: 

abstract void moveTo(double deltaX, double deltaY);

If a class includes abstract methods, the class itself must be declared abstract, as in: 

public abstract class GraphicObject {

   // declare fields

   // declare non-abstract methods

   abstract void draw();

}

When an abstract class is subclassed, the subclass usually provides implementations for all of the abstract methods in its parent class. However, if it does not, the subclass must also be declared abstract. 



Note: All of the methods in an interface (see the Interfaces section) are implicitly abstract, so the abstract modifier is not used with interface methods (it could be—it's just not necessary). 

Abstract Classes versus Interfaces

Unlike interfaces, abstract classes can contain fields that are not static and final, and they can contain implemented methods. Such abstract classes are similar to interfaces, except that they provide a partial implementation, leaving it to subclasses to complete the implementation. If an abstract class contains only abstract method declarations, it should be declared as an interface instead. 

Multiple interfaces can be implemented by classes anywhere in the class hierarchy, whether or not they are related to one another in any way. Think of Comparable or Cloneable, for example. 

By comparison, abstract classes are most commonly subclassed to share pieces of implementation. A single abstract class is subclassed by similar classes that have a lot in common (the implemented parts of the abstract class), but also have some differences (the abstract methods). 

Пример тук:
http://java.sun.com/docs/books/tutorial/java/IandI/abstract.html
За наследяване, надявам се, вече можем да говорим след Програмиране 1.

In object-oriented programming, inheritance is a way to form new classes (instances of which are called objects) using classes that have already been defined. The inheritance concept was invented in 1967 for Simula.[1]
The new classes, known as derived classes, take over (or inherit) attributes and behavior of the pre-existing classes, which are referred to as base classes (or ancestor classes). It is intended to help reuse existing code with little or no modification.

Inheritance provides the support for representation by categorization in computer languages. Categorization is a powerful mechanism number of information processing, crucial to human learning by means of generalization (what is known about specific entities is applied to a wider group given a belongs relation can be established) and cognitive economy (less information needs to be stored about each specific entity, only its particularities).

Още е писано тук:

http://en.wikipedia.org/wiki/Inheritance_(computer_science)
6. Полиморфизъм

In computer science, polymorphism is a programming language feature that allows values of different data types to be handled using a uniform interface. The concept of parametric polymorphism applies to both data types and functions. A function that can evaluate to or be applied to values of different types is known as a polymorphic function. A data type that can appear to be of a generalized type (e.g., a list with elements of arbitrary type) is designated polymorphic data type like the generalized type from which such specializations are made.

There are two fundamentally different kinds of polymorphism, originally informally described by Christopher Strachey in 1967. If the range of actual types that can be used is finite and the combinations must be specified individually prior to use, it is called ad-hoc polymorphism. If all code is written without mention of any specific type and thus can be used transparently with any number of new types, it is called parametric polymorphism. John C. Reynolds (and later Jean-Yves Girard) formally developed this notion of polymorphism as an extension to the lambda calculus (called the polymorphic lambda calculus, or System F).

In object-oriented programming, ad-hoc polymorphism is a concept in type theory wherein a name may denote instances of many different classes as long as they are related by some common super class.[1] Ad-hoc polymorphism is generally supported through subtyping, i.e., objects of different types are entirely substitutable for objects of another type (their base type(s)) and thus can be handled via a common interface. Ad-hoc polymorphism is also supported in many languages using function and method overloading.[citation needed]
Parametric polymorphism is widely supported in statically typed functional programming languages. In the object-oriented programming community, programming using parametric polymorphism is often called generic programming.

Type polymorphism in object-oriented programming is the ability of one type, A, to appear as and be used like another type, B. In strongly typed languages, this usually means that type A somehow derives from type B, or type A implements an interface that represents type B. In weakly typed languages types are implicitly polymorphic.

Operator Overloading the numerical operators +, -, /, * allow polymorphic treatment of the various numerical types: integer, unsigned integer, float, decimal, etc; each of which have different ranges, bit patterns, and representations. Another common example is the use of the "+" operator which allows similar or polymorphic treatment of numbers (addition), strings (concatenation), and lists (attachment). This is a lesser used feature of polymorphism.

The primary usage of polymorphism in industry (object-oriented programming theory) is the ability of objects belonging to different types to respond to method, field, or property calls of the same name, each one according to an appropriate type-specific behavior. The programmer (and the program) does not have to know the exact type of the object in advance, and so the exact behavior is determined at run time (this is called late binding or dynamic binding).

The different objects involved only need to present a compatible interface to the clients (the calling routines). That is, there must be public or internal methods, fields, events, and properties with the same name and the same parameter sets in all the superclasses, subclasses, and potentially interfaces. In principle, the object types may be unrelated, but since they share a common interface, they are often implemented as subclasses of the same superclass. Though it is not required, it is understood that the different methods will also produce similar results (for example, returning values of the same type).

Polymorphism is not the same as method overloading or method overriding. [1] Polymorphism is only concerned with the application of specific implementations to an interface or a more generic base class. Method overloading refers to methods that have the same name but different signatures inside the same class. Method overriding is where a subclass replaces the implementation of one or more of its parent's methods. Neither method overloading nor method overriding are by themselves implementations of polymorphism. [2]
Пример

Java
interface Animal 

{
    String getName();

    String talk();

}
abstract class AnimalBase implements Animal

{
    private final String name;

    protected AnimalBase(String name) {
        this.name = name;

    }
    public String getName() {
        return name;

    }
}
class Cat extends AnimalBase 

{
    public Cat(String name) {
        super(name);

    }
    public String talk() {
        return "Meowww!";

    }
}
class Dog extends AnimalBase 

{
    public Dog(String name) {
        super(name);

    }
    public String talk() {
        return "Arf! Arf!";

    }
}
public class TestAnimals

{
    // prints the following:
    //
    // Missy: Meowww!
    // Mr. Bojangles: Meowww!
    // Lassie: Arf! Arf!
    //
    public static void main(String[] args) {
        Animal[] animals = {
            new Cat("Missy"),

            new Cat("Mr. Bojangles"),

            new Dog("Lassie")
        };

        for (Animal a : animals) {
            System.out.println(a.getName() + ": " + a.talk());

        }
    }
}
In object-oriented programming languages, the term polymorphism has different, but related meanings; one of these, parametric polymorphism, is known as generic programming in the Object Oriented Programming Community and is supported by many languages including C++, C# and Java.

Generics allow you compile time type safety and other benefits and/or disadvantages depending on the language's implementation.
За това (Generics) има и глава във Бейли. Мисля, че те са онова, което в конспекта се нарича типови параметри.
Generics in Java

  Generics are a facility of generic programming that was added to the Java programming language in 2004 as part of J2SE 5.0. They allow "a type or method to operate on objects of various types while providing compile-time type safety.

  A type variable is an unqualified identifier. Type variables are introduced by generic class declarations, generic interface declarations, generic method declarations, and by generic constructor declarations. 

  A class is generic if it declares one or more type variables. These type variables are known as the type parameters of the class. It defines one or more type variables that act as parameters. A generic class declaration defines a set of parameterized types, one for each possible invocation of the type parameter section. All of these parameterized types share the same class at runtime. 

  An interface is generic if it declares one or more type variables. These type variables are known as the type parameters of the interface. It defines one or more type variables that act as parameters. A generic interface declaration defines a set of types, one for each possible invocation of the type parameter section. All parameterized types share the same interface at runtime.

Motivation for generics
The following block of Java code illustrates a problem that exists when not using generics. First, it declares an ArrayList of type Object. Then, it adds a String to the ArrayList. Finally, it attempts to retrieve the added String and cast it to an Integer.

  List v = new ArrayList();

  v.add("test");

  Integer i = (Integer)v.get(0);

Although the code compiles without error, it throws a runtime exception (java.lang.ClassCastException) when executing the third line of code. This type of problem can be avoided by using generics and is the primary motivation for using generics.

Utilizing generics, the above code fragment can be rewritten as follows:

  List<String> v = new ArrayList<String>();

  v.add("test");

  Integer i = v.get(0); // (type error)
The type parameter String within the angle brackets declares the ArrayList to be constituted of Strings (a descendant of the ArrayList's generic Object constituents). With generics, it is no longer necessary to cast the third line to any particular type, because the result of v.get(0) is defined as String by the code generated by the compiler.

Generic class definitions
Here is an example of a generic class:

public class Pair<T, S>

{
  public Pair(T f, S s)
  { 

    first = f;

    second = s;   

  }
  public T getFirst()
  {
    return first;

  }
  public S getSecond() 

  {
    return second;

  }
  public String toString()
  { 

    return "(" + first.toString() + ", " + second.toString() + ")"; 

  }
  private T first;

  private S second;

}
This generic class can be used in the following way:

Pair<String, String> grade440 = new Pair<String, String>("mike", "A");

Pair<String, Integer> marks440 = new Pair<String, Integer>("mike", 100);

System.out.println("grade:" + grade440.toString());

System.out.println("marks:" + marks440.toString());

Hetergenous data structures are data structures whose components are of different types. An example is an array whose elements point to objects of different types, such as person, employee, student, etc. Обикновено се реализират чрез наследяващи (derived – извлечени? наследени?) класове и типовата параметризация, за която пише по-горе (или поне така казва книгата, която аз намерих). За обобщени структури от данни може да се каже достатъчно, като се говори за мотивировката за типовите параметри.
6. Рекурсия
Що е рекурсия, вече знаем от предния семестър, що е „разделяй и владей”, надявам се, също. Примери са няколко от сортировките (Merge, Quick, etc.) и целия начин на действие на двоичните дървета. 
Recursion, in mathematics and computer science, is a method of defining functions in which the function being defined is applied within its own definition. The term is also used more generally to describe a process of repeating objects in a self-similar way.

Solving a problem using recursion means the solution depends on solutions to smaller instances of the same problem.

In computer science, divide and conquer (D&C) is an important algorithm design paradigm based on multi-branched recursion. A divide and conquer algorithm works by recursively breaking down a problem into two or more sub-problems of the same (or related) type, until these become simple enough to be solved directly. The solutions to the sub-problems are then combined to give a solution to the original problem.

This technique is the basis of efficient algorithms for all kinds of problems, such as sorting (e.g., quicksort, merge sort), multiplying large numbers (e.g. Karatsuba), syntactic analysis (e.g., top-down parsers), and computing the discrete Fourier transform (FFTs).

Solving difficult problems
Divide and conquer is a powerful tool for solving conceptually difficult problems, such as the classic Tower of Hanoi puzzle: all it requires is a way of breaking the problem into sub-problems, of solving the trivial cases and of combining sub-problems to the original problem.

[edit] Algorithm efficiency
The divide-and-conquer paradigm often helps in the discovery of efficient algorithms. It was the key, for example, to Karatsuba's fast multiplication method, the quicksort and mergesort algorithms, and fast Fourier transforms.

Recursion
Divide-and-conquer algorithms are naturally implemented as recursive procedures. In that case, the partial sub-problems leading to the one currently being solved are automatically stored in the procedure call stack.

[image: image1.png]



recursive data structure

(definition) 

Definition: A data structure that is partially composed of smaller or simpler instances of the same data structure. For instance, a tree is composed of smaller trees (subtrees) and leaf nodes, and a list may have other lists as elements. 

A recursive data structure is an object or class that contains an abstraction of itself.
In mathematical terms, we say that the object is "isomorphic" to itself. The basic embodiment of a recursive data structure is the Composite Design pattern. Recursive data structures enable us to represent repetitive abstract patterns. In such, they enable us to generate or represent complexity from simplictity.

The Composite Design pattern allows a client object to treat both single components and collections of components identically. 

Composite patterns are often used to represent recursive data structures.

За списъци Бейли е писал доста, и може да се чете оттам. Има и презентация Linked_lists.pdf.

In computer science, a linked list is data structure that consists of a sequence of data records such that in each record there is a field that contains a reference (i.e., a link) to the next record in the sequence.

Linked lists are among the simplest and most common data structures, and are used to implement many important abstract data structures, such as stacks, queues, hash tables, symbolic expressions, skip lists, and many more.

The principal benefit of a linked list over a conventional array is that the order of the linked items may be different from the order that the data items are stored in memory or on disk. For that reason, linked lists allow insertion and removal of nodes at any point in the list, with a constant number of operations.

On the other hand, linked lists by themselves do not allow random access to the data, or any form of efficient indexing. Thus, many basic operations — such as obtaining the last node of the list, or finding a node that contains a given data, or locating the place where a new node should be inserted — may require scanning most of the list elements.

Circularly-linked list
In a circularly linked list, all nodes are linked in a continuous circle, without using null. For lists with a front and a back (such as a queue), one stores a reference to the last node in the list. The next node after the last node is the first node. Elements can be added to the back of the list and removed from the front in constant time.

Circularly-linked lists can be either singly or doubly linked.

Both types of circularly-linked lists benefit from the ability to traverse the full list beginning at any given node. This often allows us to avoid storing firstNode and lastNode, although if the list may be empty we need a special representation for the empty list, such as a lastNode variable which points to some node in the list or is null if it's empty; we use such a lastNode here. This representation significantly simplifies adding and removing nodes with a non-empty list, but empty lists are then a special case.

Both stacks and queues are often implemented using linked lists, and simply restrict the type of operations which are supported.

Има още малко тук:

http://en.wikipedia.org/wiki/Linked_list#Linked_list_operations
8. Двусвързани списъци

За линейни структури от данни вече пише по-горе. Много от нещата по 7 важат и тука, и отново Бейли е писал доста (!). В тази статия от която вземах за 7., почти не се прави разлика между двойно и единично свързани списъци:

http://en.wikipedia.org/wiki/Linked_list
9. Итерация. Софтуерни модели (Design patterns).

Iteration in computing is the repetition of a process within a computer program. It can be used both as a general term, synonymous with repetition, and to describe a specific form of repetition with a mutable state.
In computer science, an iterator is an object that allows a programmer to traverse through all the elements of a collection, regardless of its specific implementation. An iterator is sometimes called a cursor, especially within the context of a database.
An iterator may be thought of as a type of pointer which has two primary operations: referencing one particular element in the object collection (called element access), and modifying itself so it points to the next element (called element traversal). There must also be a way to create an iterator so it points to some first element as well as some way to determine when the iterator has exhausted all of the elements in the container.
Java
Introduced in the Java JDK 1.2 release, the java.util.Iterator interface allows the iteration of container classes. Each Iterator provides a next() and hasNext() method, and may optionally support a remove() method. Iterators are created by the corresponding container class, typically by a method named iterator().

The next() method advances the iterator and returns the value pointed to by the iterator. When first created, an iterator points to a special value before the first element, so that the first element is obtained upon the first call to next(). To determine when all the elements in the container have been visited the hasNext() test method is used. The following example shows a simple use of iterators:

Iterator iter = list.iterator();

//Iterator<MyType> iter = list.iterator();    in J2SE 5.0
while (iter.hasNext())
    System.out.println(iter.next());

Важно е да се отбележи, че реализацията (имплементацията) на итератора не ни е известна, тоест, знаем, че той ще ни върне всички елементи, но не и в какъв ред. На това набляга и Бейли – там може да се чете доста за итератори. Оттук и „Абстракция чрез итерация”. Ето:
In object-oriented programming, the Iterator pattern is a design pattern in which iterators are used to access the elements of an aggregate object sequentially without exposing its underlying representation. An Iterator object encapsulates the internal structure of how the iteration occurs.

For example, a tree, linked list, hash table, and an array all need to be iterated with the methods search, sort, and next. Rather than having 12 different methods to manage (one implementation for each of the previous three methods in each structure), using the iterator pattern yields just seven: one for each class using the iterator to obtain the iterator and one for each of the three methods. Therefore, to run the search method on the array, you would call array.search(), which hides the call to array.iterator.search().

Design pattern (computer science)

In software engineering, a design pattern is a general reusable solution to a commonly occurring problem in software design. A design pattern is not a finished design that can be transformed directly into code. It is a description or template for how to solve a problem that can be used in many different situations. Object-oriented design patterns typically show relationships and interactions between classes or objects, without specifying the final application classes or objects that are involved.

Not all software patterns are design patterns. Algorithms are not thought of as design patterns, since they solve computational problems rather than software design problems. Architectural patterns are larger in scope, usually describing an overall pattern followed by an entire program. 

The term “design patterns” sounds a bit formal to the uninitiated and can be

somewhat off-putting when you first encounter it. But, in fact, design patterns

are just convenient ways of reusing object-oriented code between projects and

between programmers. The idea behind design patterns is simple-- write

down and catalog common interactions between objects that programmers

have frequently found useful.

The field of design patterns goes back at least to the early 1980s. At that time,

Smalltalk was the most common OO language and C++ was still in its

infancy. At that time, structured programming was a commonly-used phrased

and OO programming was not yet as widely supported. The idea of

programming frameworks was popular however, and as frameworks 

developed, some of what we now called design patterns began to emerge.

In other words, design patterns describe how objects communicate without

become entangled in each other’s data models and methods. Keeping this

separation has always been an objective of good OO programming, and if you

have been trying to keep objects minding their own business, you are

probably using some of the common design patterns already.
Вече видяхме два модела – Iterator и Composite, в тази и в предишните теми (по-добре се разбира дефиницията върху такива примери, според мене). После ще видим и Decorator.
Има писано още тука, но не ми изглежда особено полезно за изпита:

http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
10. Йерархични структури от данни.
A hierarchical data model is a data model in which the data is organized into a tree-like structure. The structure allows repeating information using parent/child relationships: each parent can have many children but each child only has one parent. All attributes of a specific record are listed under an entity type.
A tree structure is a way of representing the hierarchical nature of a structure in a graphical form. It is named a "tree structure" because the classic representation looks a bit like a tree, even though the tree is generally shown upside down compared with a real tree; that is to say with the root at the top and the leaves at the bottom.
Hierarchical data structures are important representation techniques in the

domains of computer vision, image processing, computer graphics, robotics, and

geographic information systems. They are based on the principle of recursive

decomposition (similar to divide and conquer methods). They are used primarily as

devices to sort data of more than one dimension and different spatial types. The term
quadtree is often used to describe this class of data structures.

In computer science, a heap is a specialized tree-based data structure that satisfies the heap property: if B is a child node of A, then key(A) ≥ key(B). This implies that an element with the greatest key is always in the root node, and so such a heap is sometimes called a max-heap. (Alternatively, if the comparison is reversed, the smallest element is always in the root node, which results in a min-heap.) The several variants of heaps are the prototypical most efficient implementations of the abstract data type priority queues. Priority queues are useful in many applications. In particular, heaps are crucial in several efficient graph algorithms.

A binary heap is a heap data structure created using a binary tree. It can be seen as a binary tree with two additional constraints:

· The shape property: the tree is an almost complete binary tree; that is, all levels of the tree, except possibly the last one (deepest) are fully filled, and, if the last level of the tree is not complete, the nodes of that level are filled from left to right.

· The heap property: each node is greater than or equal to each of its children according to some comparison predicate which is fixed for the entire data structure.

The operations commonly performed with a heap are

· delete-max or delete-min: removing the root node of a max- or min-heap, respectively

· increase-key or decrease-key: updating a key within a max- or min-heap, respectively

· insert: adding a new key to the heap

· merge: joining two heaps to form a valid new heap containing all the elements of both.

Heaps are used in the sorting algorithm heapsort.

Heaps are a favorite data structure for many applications.

· Heapsort: One of the best sorting methods being in-place and with no quadratic worst-case scenarios.

· Selection algorithms: Finding the min, max or both of them, median or even any k-th element in sublinear time[citation needed] can be done dynamically with heaps.

· Graph algorithms: By using heaps as internal traversal data structures, run time will be reduced by an order of polynomial. Examples of such problems are Prim's minimal spanning tree algorithm and Dijkstra's shortest path problem.

Interestingly, full and almost full binary heaps may be represented in a very space-efficient way using an array alone. The first (or last) element will contain the root. The next two elements of the array contain its children. The next four contain the four children of the two child nodes, etc. Thus the children of the node at position n would be at positions 2n and 2n+1 in a one-based array, or 2n+1 and 2n+2 in a zero-based array. This allows moving up or down the tree by doing simple index computations. Balancing a heap is done by swapping elements which are out of order. As we can build a heap from an array without requiring extra memory (for the nodes, for example), heapsort can be used to sort an array in-place.

Heapsort (method) is a comparison-based sorting algorithm, and is part of the selection sort family. Although somewhat slower in practice on most machines than a good implementation of quicksort, it has the advantage of a worst-case Θ(n log n) runtime.

The heap sort works as its name suggests - it begins by building a heap out of the data set, and then removing the largest item and placing it at the end of the sorted array. After removing the largest item, it reconstructs the heap and removes the largest remaining item and places it in the next open position from the end of the sorted array. This is repeated until there are no items left in the heap and the sorted array is full. Elementary implementations require two arrays - one to hold the heap and the other to hold the sorted elements. [2]
Heapsort inserts the input list elements into a heap data structure. The largest value (in a max-heap) or the smallest value (in a min-heap) are extracted until none remain, the values having been extracted in sorted order. The heap's invariant is preserved after each extraction, so the only cost is that of extraction.

During extraction, the only space required is that needed to store the heap. In order to achieve constant space overhead, the heap is stored in the part of the input array that has not yet been sorted. (The structure of this heap is described at Binary heap: Heap implementation.)

Heapsort uses two heap operations: insertion and root deletion. Each extraction places an element in the last empty location of the array. The remaining prefix of the array stores the unsorted elements.

Heap implementation
It is perfectly acceptable to use a traditional binary tree data structure to implement a binary heap. There is an issue with finding the adjacent element on the last level on the binary heap when adding an element which can be resolved algorithmically or by adding extra data to the nodes, called “threading” the tree — that is, instead of merely storing references to the children, we store the inorder successor of the node as well.




A small complete binary tree stored in an array

However, a more common approach, and an approach aligned with the theory behind heaps, is to store the heap in an array. Any binary tree can be stored in an array, but because a heap is always an almost complete binary tree, it can be stored compactly. No space is required for pointers; instead, the parent and children of each node can be found by simple arithmetic on array indices. Details depend on the root position (which in turn may depend on constraints of a programming language used for implementation). If the tree root item has index 0 (n tree elements are a[0] .. a[n−1]), then for each index i, element a[i] has children a[2i+1] and a[2i+2], and the parent a[floor((i−1)/2)], as shown in the figure. If the root is a[1] (tree elements are a[1] .. a[n]), then for each index i, element a[i] has children a[2i] and a[2i+1], and the parent a[floor(i/2)]. This is a simple example of an implicit data structure.

This approach is particularly useful in the heapsort algorithm, where it allows the space in the input array to be reused to store the heap (i.e. the algorithm is in-place). However it requires allocating the array before filling it, which makes this method not that useful in priority queues implementation, where the number of tasks (heap elements) is not necessarily known in advance.

Има и презентация върху Heap-ове, Heaps.pdf, но иначе мисля, че не сме го взимали. При желание (ако презентацията и това тука не стигне), освен това има и такива доста подробни статии:

http://en.wikipedia.org/wiki/Heap_(data_structure)
http://en.wikipedia.org/wiki/Binary_heap
http://en.wikipedia.org/wiki/Heapsort
11. Дървета

Отново Бейли е писал достатъчно (Binary Trees, Search Trees – две глави). Има малко за дървета и в темата за Heap-ове. Ето и извадки от други места:
In computer science, a tree is a widely-used data structure that emulates a hierarchical tree structure with a set of linked nodes. It is an acyclic connected graph where each node has a set of zero or more children nodes, and at most one parent node.
Terminology
A node is a structure which may contain a value, a condition, or represent a separate data structure (which could be a tree of its own). Each node in a tree has zero or more child nodes, which are below it in the tree (by convention, trees grow down, not up as they do in nature). A node that has a child is called the child's parent node (or ancestor node, or superior). A node has at most one parent.

Nodes at the bottommost level of the tree are called leaf nodes. Since they are at the bottommost level, they do not have any children. They are also referred to as terminal nodes.

The height of a node is the length of the longest downward path to a leaf from that node. The height of the root is the height of the tree. The depth of a node is the length of the path to its root (i.e., its root path). This is commonly needed in the manipulation of the various self balancing trees, AVL Trees in particular. Conventionally, the value -1 corresponds to a subtree with no nodes, whereas zero corresponds to a subtree with one node.

The topmost node in a tree is called the root node. Being the topmost node, the root node will not have parents. It is the node at which operations on the tree commonly begin (although some algorithms begin with the leaf nodes and work up ending at the root). All other nodes can be reached from it by following edges or links. (In the formal definition, each such path is also unique). In diagrams, it is typically drawn at the top. In some trees, such as heaps, the root node has special properties. Every node in a tree can be seen as the root node of the subtree rooted at that node.

An internal node or inner node is any node of a tree that has child nodes and is thus not a leaf node.

A subtree of a tree T is a tree comprised of a node in T and all of its descendants in T. (This is different from the formal definition of subtree used in graph theory.[1]) The subtree corresponding to the root node is the entire tree; the subtree corresponding to any other node is called is a proper subtree (in analogy to the term proper subset).

To traverse a non-empty binary tree in preorder, perform the following operations recursively at each node, starting with the root node:

1. Visit the node.

2. Traverse the left subtree.

3. Traverse the right subtree.

(This is also called Depth-first traversal.)

To traverse a non-empty binary tree in inorder, perform the following operations recursively at each node:

1. Traverse the left subtree.

2. Visit the node.

3. Traverse the right subtree.

(This is also called Symmetric traversal.)

Аналогично и за postorder.
Finally, trees can also be traversed in level-order, where we visit every node on a level before going to a lower level. This is also called Breadth-first traversal.

In computer science, a binary tree is a tree data structure in which each node has at most two children. Typically the child nodes are called left and right. Binary trees are commonly used to implement binary search trees and binary heaps.

Definitions for rooted trees
· A directed edge refers to the link from the parent to the child (the arrows in the picture of the tree).

· The root node of a tree is the node with no parents. There is at most one root node in a rooted tree.

· A leaf node has no children.

· The depth of a node n is the length of the path from the root to the node. The set of all nodes at a given depth is sometimes called a level of the tree. The root node is at depth zero.

· The height of a tree is the length of the path from the root to the deepest node in the tree. A (rooted) tree with only a node (the root) has a height of zero.

· Siblings are nodes that share the same parent node.

· If a path exists from node p to node q, where node p is closer to the root node than q, then p is an ancestor of q and q is a descendant of p.

· The size of a node is the number of descendants it has including itself.

· In-degree of a node is the number of edges arriving at that node.

· Out-degree of a node is the number of edges leaving that node.

· Root is the only node in the tree with In-degree = 0

In computer science, a binary search tree (BST) is a binary tree data structure which has the following properties:

· Each node (item in the tree) has a distinct value.

· Both the left and right subtrees must also be binary search trees.

· The left subtree of a node contains only values lesser than the node's value.

· The right subtree of a node contains only values greater than the node's value.

The major advantage of binary search trees over other data structures is that the related sorting algorithms and search algorithms such as in-order traversal can be very efficient.

Binary search trees can choose to allow or disallow duplicate values, depending on the implementation.

Binary search trees are a fundamental data structure used to construct more abstract data structures such as sets, multisets, and associative arrays.

Searching
Searching a binary tree for a specific value can be a recursive or iterative process. This explanation covers a recursive method.

We begin by examining the root node. If the tree is null, the value we are searching for does not exist in the tree. Otherwise, if the value equals the root, the search is successful. If the value is less than the root, search the left subtree. Similarly, if it is greater than the root, search the right subtree. This process is repeated until the value is found or the indicated subtree is null. If the searched value is not found before a null subtree is reached, then the item must not be present in the tree.

Here is the search algorithm in the Python programming language:

 def search_binary_tree(node, key):

     if node is None:

         return None  # key not found
     if key < node.key:

         return search_binary_tree(node.left, key)
     elif key > node.key:

         return search_binary_tree(node.right, key)
     else:  # key is equal to node key
         return node.value  # found key
This operation requires O(log n) time in the average case, but needs O(n) time in the worst-case, when the unbalanced tree resembles a linked list (degenerate tree).

Insertion
Insertion begins as a search would begin; if the root is not equal to the value, we search the left or right subtrees as before. Eventually, we will reach an external node and add the value as its right or left child, depending on the node's value. In other words, we examine the root and recursively insert the new node to the left subtree if the new value is less than the root, or the right subtree if the new value is greater than or equal to the root.

Here's how a typical binary search tree insertion might be performed in C++:

 /* Inserts the node pointed to by "newNode" into the subtree rooted at "treeNode" */
 void InsertNode(Node* &treeNode, Node *newNode)
 {
     if (treeNode == NULL)
       treeNode = newNode;

     else if (newNode->key < treeNode->key)
       InsertNode(treeNode->left, newNode);

     else
       InsertNode(treeNode->right, newNode);

 }
The above "destructive" procedural variant modifies the tree in place. It uses only constant space, but the previous version of the tree is lost. 

Има също и статия за изтриване с примерен код, но е много дълга:

Deletion
There are several cases to be considered:

· Deleting a leaf: Deleting a node with no children is easy, as we can simply remove it from the tree.

· Deleting a node with one child: Delete it and replace it with its child.

· Deleting a node with two children: Suppose the node to be deleted is called N. We replace the value of N with either its in-order successor (the left-most child of the right subtree) or the in-order predecessor (the right-most child of the left subtree).




Once we find either the in-order successor or predecessor, swap it with N, and then delete it. Since both the successor and the predecessor must have fewer than two children, either one can be deleted using the previous two cases. A good implementation avoids consistently using one of these nodes, however, because this can unbalance the tree.

Although this operation does not always traverse the tree down to a leaf, this is always a possibility; thus in the worst case it requires time proportional to the height of the tree. It does not require more even when the node has two children, since it still follows a single path and does not visit any node twice.

Here is the code in Python: 
(В оригинала се чете по-лесно: http://en.wikipedia.org/wiki/Binary_search_tree#Deletion )

def findSuccessor(self):

    succ = None
    if self.rightChild:

        succ = self.rightChild.findMin()
    else:

        if self.parent.leftChild == self:

            succ = self.parent
        else:

            self.parent.rightChild = None
            succ = self.parent.findSuccessor()
            self.parent.rightChild = self
        return succ

def findMin(self):

    n = self
    while n.leftChild:

        n = n.leftChild
    print 'found min, key = ', n.key
    return n

def spliceOut(self):

    if (not self.leftChild and not self.rightChild):

        if self == self.parent.leftChild:

            self.parent.leftChild = None
        else:

            self.parent.rightChild = None
    elif (self.leftChild or self.rightChild):

        if self.leftChild:

            if self == self.parent.leftChild:

                self.parent.leftChild = self.leftChild
            else:

                self.parent.rightChild = self.leftChild
        else:

            if self == self.parent.leftChild:

                self.parent.leftChild = self.rightChild
            else:

                self.parent.rightChild = self.rightChild
def binary_tree_delete(self, key):

    if self.key == key:

        if not (self.leftChild or self.rightChild):

            if self == self.parent.leftChild:

                self.parent.leftChild = None
            else:

                self.parent.rightChild = None
        elif (self.leftChild or self.rightChild) and (not (self.leftChild and self.rightChild)):

            if self.leftChild:

                if self == self.parent.leftChild:

                    self.parent.leftChild = self.leftChild
                else:

                    self.parent.rightChild = self.leftChild
            else:

                if self == self.parent.leftChild:

                    self.parent.leftChild = self.rightChild
                else:

                    self.parent.rightChild = self.rightchild
        else:

            succ = self.findSuccessor()
            succ.spliceOut()
            if self == self.parent.leftChild:

                self.parent.leftChild = succ

            else:

                self.parent.rightChild = succ

            succ.leftChild = self.leftChild
            succ.rightChild = self.rightChild
    else:

        if key < self.key:

Sort
A binary search tree can be used to implement a simple but efficient sorting algorithm. Similar to heapsort, we insert all the values we wish to sort into a new ordered data structure—in this case a binary search tree—and then traverse it in order, building our result:

 def build_binary_tree(values):

     tree = None
     for v in values:

         tree = binary_tree_insert(tree, v)
     return tree

 def traverse_binary_tree(treenode):

     if treenode is None: return []
     else:

         left, value, right = treenode

         return (traverse_binary_tree(left), [value], traverse_binary_tree(right))
The worst-case time of build_binary_tree is Θ(n2)—if you feed it a sorted list of values, it chains them into a linked list with no left subtrees. For example, build_binary_tree([1, 2, 3, 4, 5]) yields the tree (None, 1, (None, 2, (None, 3, (None, 4, (None, 5, None))))).

There are several schemes for overcoming this flaw with simple binary trees; the most common is the self-balancing binary search tree. If this same procedure is done using such a tree, the overall worst-case time is O(nlog n), which is asymptotically optimal for a comparison sort. In practice, the poor cache performance and added overhead in time and space for a tree-based sort (particularly for node allocation) make it inferior to other asymptotically optimal sorts such as heapsort for static list sorting. On the other hand, it is one of the most efficient methods of incremental sorting, adding items to a list over time while keeping the list sorted at all times...

12. Балансирани дървета.
Аз на тази тема бих написал повечето от предишната.

In computer science, a self-balancing binary search tree or height-balanced binary search tree is a binary search tree (BST) that attempts to keep its height, or the number of levels of nodes beneath the root, as small as possible at all times, automatically. It is one of the most efficient ways of implementing ordered lists and can be used for other data structures such as associative arrays and sets.
Overview
Most operations on a binary search tree take time directly proportional to the height of the tree, so it is desirable to keep the height small. Ordinary binary search trees have the primary disadvantage that they can attain very large heights in rather ordinary situations, such as when the keys are inserted in sorted order. The result is a data structure similar to a linked list, making all operations on the tree expensive. If we know all the data ahead of time, we can keep the height small on average by adding values in a random order, resulting in a random binary search tree, but we don't always have this luxury, particularly in online algorithms.

Self-balancing binary trees solve this problem by performing transformations on the tree (such as tree rotations) at key times, in order to reduce the height. Although a certain overhead is involved, it is justified in the long run by ensuring fast execution of later operations.

The height must always be at most the ceiling of log2n, since there are at most 2k nodes on the kth level; a complete or full binary tree has exactly this many levels. Balanced BSTs are not always so precisely balanced, since it can be expensive to keep a tree at minimum height at all times; instead, most algorithms keep the height within a constant factor of this lower bound.

Times for various operations in terms of number of nodes in the tree n:

	Operation
	Big-O time

	Lookup
	O(log n)

	Insertion
	O(log n)

	Removal
	O(log n)

	In-order iteration over all elements
	O(n)


For some implementations these times are worst-case, while for others they are amortized.

Следващия параграф са предимно общи приказки.
Self-balancing binary search trees can be used in a natural way to construct and maintain ordered lists, such as priority queues.

They can also be used for associative arrays; key-value pairs are simply inserted with an ordering based on the key alone. In this capacity, self-balancing BSTs have a number of advantages and disadvantages over their main competitor, hash tables. Lookup is somewhat complicated in the case where the same key can be used multiple times.

Many algorithms can exploit self-balancing BSTs to achieve good worst-case bounds with very little effort. For example, if binary tree sort is done with a BST, we have a very simple-to-describe yet asymptotically optimal O(n log n) sorting algorithm (although such an algorithm has practical disadvantages due to bad cache behavior). Similarly, many algorithms in computational geometry exploit variations on self-balancing BSTs to solve problems such as the line segment intersection problem and the point location problem efficiently.

Self-balancing BSTs are a flexible data structure, in that it's easy to extend them to efficiently record additional information or perform new operations. For example, one can record the number of nodes in each subtree having a certain property, allowing one to count the number of nodes in a certain key range with that property in O(log n) time. These extensions can be used, for example, to optimize database queries or other list-processing algorithms.

height-balanced tree

(data structure) 

Definition: A tree whose subtrees differ in height by no more than one and the subtrees are height-balanced, too. An empty tree is height-balanced. 

Common operations
· Enumerating all the items

· Enumerating a section of a tree

· Searching for an item

· Adding a new item at a certain position on the tree

· Deleting an item

· Removing a whole section of a tree (called pruning)

· Adding a whole section to a tree (called grafting)

· Finding the root for any node

Това е от един стар конспект:

Дървовидни структури 

• Бинарно дърво – основни понятия. Бинарно дърво за търсене – основни операции: вмъкване и премахване на елемент в дървото. Сложност на операциите. 

• Обхождане на елементите в дърво – пост-, пре– и ин– обхождане. Дървовидна сортировка. 

• Балансирани двоични дървета. 

• 2 – 3 дърво – 2 полета за данни и 3 поддървета. 

• n-арно дърво. Търсене на елемент в n-арно дърво. 
A 2-3 tree in computer science is a type of data structure, a B-tree where every node with children (internal node) has either two children and one data element (2-nodes) or three children and two data elements (3-nodes). Nodes on the outside of the tree (leaf nodes) have no children and one or two data elements.

In computer science, a B-tree is a tree data structure that keeps data sorted and allows searches, insertions, and deletions in logarithmic amortized time. Unlike self-balancing binary search trees, it is optimized for systems that read and write large blocks of data. It is most commonly used in databases and filesystems.

In B-trees, internal (non-leaf) nodes can have a variable number of child nodes within some pre-defined range. When data are inserted or removed from a node, its number of child nodes changes. In order to maintain the pre-defined range, internal nodes may be joined or split. Because a range of child nodes is permitted, B-trees do not need re-balancing as frequently as other self-balancing search trees, but may waste some space, since nodes are not entirely full. The lower and upper bounds on the number of child nodes are typically fixed for a particular implementation. For example, in a 2-3 B-tree (often simply referred to as a 2-3 tree), each internal node may have only 2 or 3 child nodes.

A B-tree is kept balanced by requiring that all leaf nodes are at the same depth. This depth will increase slowly as elements are added to the tree, but an increase in the overall depth is infrequent, and results in all leaf nodes being one more node further away from the root.

Обратно на 2-3 дървета:
	


2 node
	


3 node


2-3 trees are an isometry of AA trees, meaning that they are equivalent data structures. In other words, for every 2-3 tree, there exists at least one AA tree with data elements in the same order. 2-3 trees are balanced, meaning that each right, center, and left subtree contains the same or close to the same amount of data.

[edit] Properties
· Every non-leaf node has 2 or 3 children

· All leaves are at the same level (the bottom level)

· All data is kept in sorted order

· Every non-leaf node will contain 1 or 2 fields.

Допълнително, има и презентация с много картинки тук:

http://www.cs.ucr.edu/cs14/cs14_06win/slides/2-3_trees_covered.pdf
За N-арни дървета сме слушали малко на лекции, май предимно дефиниция (такова дърво, в което всеки възел има не повече от N деца). Може да се каже, че височината им при балансиране расте горе-долу както логаритъм от броя на елементите при основа N, че позволяват по-сложни връзки между елементите от двоичните дървета, или че са тяхно обобщение. Всичко това, обаче, са общи приказки.

In graph theory, a k-ary tree is a rooted tree in which each node has no more than k children. It is also sometimes known as a k-way tree, an N-ary tree, or an M-ary tree.

A binary tree is the special case where k=2.

A full k-ary tree is a k-ary tree where each node has either 0 or k children.

For a k-ary tree with height h, the upper bound for the maximum number of leaves is kh.

13. Наредба

       Наредба – something.compareTo (somethingElse). Как сравняваме (методи, осигурени от класа Object, не съм сигурен дали имаше, и методи, които ние си пишем)? Връщане на +1, -1, 0 или положителноюотрицателно число и 0. Критерии за сравняване – при числа, лексикографски, по една компонента (например, дали подреждаме студентите по факултетен номер или по успех?). Да се отбележи, че тези методи за сравняване предлагат много силна абстракция, и с тяхна помощ можем да пишем общи методи за търсене и сортиране – тука има някакво покритие с предишните теми. Защо сравняваме? По-бързо търсене (например двоичното търсене разчита напълно на наредба). Много наредени структури от данни вече видяхме – най-малкото, Heap и наредените двоични дървета. За обобщени алгоритми според мене могат да се разпишат в някакъв по-общ вид нормалните алгоритми за търсене и подреждане, като се използват активно абстрактни инструменти кати итератори и методи compareTo(). Надявам се да сме говорили и нещо на лекции, защото тука освен общи приказки не виждам много какво може да се направи.
14. Асоциативни списъци, хеширане.
За асоциативни списъци – надявам се да е същото като първия параграф, който следва. Бейли е писал за Map (в съответната глава) и може да се чете оттам. Едноименния интерфейс може да се погледне от файловете му. Ето тук има хубаво въведение във хеширането, какво представлява и за какво се използва:
http://mytech.bg/uroci/22/%D0%94%D1%80%D1%83%D0%B3%D0%B8/106/%D0%A5%D0%B5%D1%88%D0%B8%D1%80%D0%B0%D0%BD%D0%B5+%D0%BE%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D0%B8+%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F/1
Към него и аз съм наизвадил разни неща:

An associative array (also associative container, map, mapping, hash, dictionary, finite map, and in query-processing an index or index file) is an abstract data type composed of a collection of unique keys and a collection of values, where each key is associated with one value (or set of values). The operation of finding the value associated with a key is called a lookup or indexing, and this is the most important operation supported by an associative array. The relationship between a key and its value is sometimes called a mapping or binding. For example, if the value associated with the key "bob" is 7, we say that our array maps "bob" to 7. Associative arrays are very closely related to the mathematical concept of a function with a finite domain. As a consequence, a common and important use of associative arrays is in memoization.

From the perspective of a computer programmer, an associative array can be viewed as a generalization of an array. While a regular array maps an index to an arbitrary data type such as integers, other primitive types, or even objects, an associative array's keys can be arbitrarily typed. The values of an associative array do not need to be the same type, although this is dependent on the programming language.

The operations that are usually defined for an associative array are:

· Add: Bind a new key to a new value

· Reassign: Bind an old key to a new value

· Remove: Unbind a key from a value and remove the key from the key set

· Lookup: Find the value (if any) that is bound to a key

In computer science, a hash table or hash map is a data structure that uses a hash function to efficiently map certain identifiers or keys (e.g., person names) to associated values (e.g., their telephone numbers). The hash function is used to transform the key into the index (the hash) of an array element (the slot or bucket) where the corresponding value is to be sought.

Ideally the hash function should map each possible key to a different slot index; but this ideal is rarely achievable in practice. Most hash table designs assume that hash collisions — pairs of different keys with the same hash values — are normal occurrences, and accommodate them in some way.

A hash function is any well-defined procedure or mathematical function which converts a large, possibly variable-sized amount of data into a small datum, usually a single integer that may serve as an index into an array. The values returned by a hash function are called hash values, hash codes, hash sums, or simply hashes.

Hash functions are mostly used to speed up table lookup or data comparison tasks — such as finding items in a database, detecting duplicated or similar records in a large file, finding similar stretches in DNA sequences, and so on.

A hash function may map two or more keys to the same hash value. In many applications, it is desirable to minimize the occurrence of such collisions; which means that the hash function must map the keys to the hash values as evenly as possible. Depending on the application, other properties may be required as well. Although the idea was conceived in the 1950s[1], the design of good hash functions is still a topic of active research.

Hash functions are related to (and often confused with) checksums, check digits, fingerprints, randomization functions, error correcting codes, and cryptographic hash functions. Although these concepts overlap to some extent, each has its own uses and requirements and is designed and optimised differently.

In computer science, a collision or clash is a situation that occurs when two distinct pieces of data have the same hash value, checksum, fingerprint, or cryptographic digest.

Collisions are unavoidable whenever members of a very large set (such as all possible person names, or all possible computer files) are mapped to a relatively short bit string. This is merely an instance of the pigeonhole principle.

The impact of collisions depends on the application. When hash functions and fingerprints are used to identify similar data, such as homologous DNA sequences or similar audio files, the functions are designed so as to maximize the probability of collision between distinct but similar data. Checksums, on the other hand, are designed to minimize the probability of collisions between similar inputs, without regard for collisions between very different inputs.

In most other applications, however, collisions of any kind are equally undesirable. Any collision in a hash table increases the average cost of lookup operations. When fingerprints are used to avoid unnecessary file storage or transfer, e.g. in a proxy server or backup system, a collision may cause incorrect operation and even permanent data loss. A successful collision attack on a cryptographic hash function may compromise the security of computer and communication systems. Therefore, much effort is devoted to the design of algorithms that minimize the occurrence of collisions for various applications.

Collision resolution
Collisions are practically unavoidable when hashing a random subset of a large set of possible keys. For example, if 2500 keys are hashed into a million buckets, even with a perfectly uniform random distribution, according to the birthday paradox there is a 95% chance of at least two of the keys being hashed to the same slot.

Therefore, most hash table implementations have some collision resolution strategy to handle such events. Some common strategies are described below. All these methods require that the keys (or pointers to them) be stored in the table, together with the associated values.

Load factor
The performance of most collision resolution methods does not depend directly on the number n of stored entries, but depends strongly on the table's load factor, the ratio n/s between n and the size s of its bucket array. With a good hash function, the average lookup cost is nearly constant as the load factor increases from 0 up to 0.7 or so. Beyond that point, the probability of collisions and the cost of handling them increases.

On the other hand, as the load factor approaches zero, the size of the hash table increases with little improvement in the search cost, and memory is wasted.
Separate chaining
In the strategy known as separate chaining, direct chaining, or simply chaining, each slot of the bucket array is a pointer to a linked list that contains the key-value pairs that hashed to the same location. Lookup requires scanning the list for an entry with the given key. Insertion requires appending a new entry record to either end of the list in the hashed slot. Deletion requires searching the list and removing the element.
Класически хеш-функции 
Хеш-функцията трябва да бъде избрана така, че да не отнема много изчистелно време, като същевременно разпределя елементите достатъчно равномерно. Може да приемем, че ключовете ни винага са число. В случай, че не са, можем да им съпоствяме накакво по определено правило. Ако са стрингове можем да ги преобразуваме до числа например като сумираме кодовете на символите им, уминожим всеки код на символ по позицията му и след това ги съберем и приемем, че низът е число в p-ична бройна система, където p е броя символи допустими в низа и др. По-долу са изброени някои класически хеш-функции върху числа. 

Остатък при деление 
Може да се каже, че това е най-простият и сравнително ефективен метод за хеширане. Взима се остатъка при целочисленото деление на ключа с размера на таблицата. 

 hash( key ) = key % n

Най-често за размер на таблицата се избира просто число. 

Милтипликативно хеширане 
При мултипликативното хеширане избираме реална константа a между 0 и 1 и образуваме функцията: 

 hash( key ) = trunc( n * ( ( key * a ) - trunc( key * a ) ) )

Т.е. взимаме дробната част от умножението на ключа с константата и я умножаваме по размера на таблицата. Често за стойност на константата се избира 

 а = ( sqrt ( 5 ) - 1 ) / 2

т.нар. златно сечение. 

Хеш функции върху части от ключа 
При този вид хеш-функции се обработва само част от ключа - използват се само цифрите стоящи на определни позиции. Такива функции обикновенно се използват когато ключът може да е много голямо число. Често се използва т.нар. сгъване - разделяме ключа на части и прилагаме някаква аритметична операция върху тях. 

Хеш функции върху низове 
Низовете са едни от най-използваните ключове при хеширането. Общата схема по която работят хеш-функциите въху тях е: 

 hash( key )

 {

   резултат = начална стоност

   за всеки сивол c от key

     резултат = комбиниране( резултат, c )

     резултат = модифициране( резултат )

   резултат = допълнително_модифициране( резултат )

 }

Най-простата фунцкия за хеширане на стрингове е т.нар. адитивно хеширане. При него се взема остатъкът от делението на сумата от ASCII кодовете на символите участващи в низа с размера на таблицата. Проблем при това хеширане е, че редът в който са символите не е от значение, което означава, че пермутациите на един низ ще имат еднакви xeш-кодове. Това може лесно да се избегне например като умножим кода на символа по позицията му или на всяка стъпка удвояваме резултата преди да го комбинираме със символа. 

Справяне с колизии 
Преди да започнем с обяснението на конкретни техники е важно да отбележим, че в литературата чисто терминологично са налице два вида разделение: хеширането бива отворено и затворено, а адресирането отворено и със списъци на препълванията (chaining). Това може да доведе до объркване, тъй като на отвореното адресиране съответства затвореното хеширане, а списъците с предпълвания принъдлежат към отвореното хеширане. В изложението по долу се използва разделението на затворено и отворено хеширане. 

Затворено хеширане 
При затвореното хеширане разпологаме с едно основно място където се съхраняват данните и не се предижда допълнително място за колизиите. В случай на колизия се правят последователни проби за промяна на хеш-адреса до достигане на свободен адрес. Ако достигнем началния адрес след поредица от пробвания следва, че таблицата е препълнена. В обшия случай това не означава, че нама никакви свободни адреси за елементи, а че има клас от ключове за които няма повече място. При препълване на таблицата или запълване до определен процент размерът й се увеличава. Съществуват следните няколко стратегии за избиране на нов свободен адрес: 

Линейно пробване 
За намиране на нов свободен адрес използваме стъпка s, с която увеличаваме адреса докато намерим свободен. При опит да увеличим адреса, така че да не принадлежи на таблицата взимаме остатъка му при целочислено деление с размера на таблицата и продължаваме както обикновено. Ако изберем стъпката s, така че s и n да са вазимно прости си гарантираме, че можем да обходим цялата таблица. Това е важно, тъй като от своя страна гарантира, че винаги когато има свободен адрес в таблицата ще можем да го използваме при необходимост. Тъсенето на елемент се осъществя по същата схема – прилага се хеш-функцията и ако ключът намиращ се на получения адрес не съвпада с търсения се прилага горната схема докато се той се намери или се попадне на незает адрес. Последното би означавало, че елемент с заявения ключ не е в таблицата. Проблем възникващ при линейто пробване е, че при ключове с близки хеш-кодове се образуват струпвания, които водят до понижаване на ефективността. 
Отворено хеширане 
Допълнителна памет 
При този метод има заделена част за препълвания разположена след адресируемата част на таблицата. При колизия елементът се добавя на първото сводобно място в частта за препълвания. При търсене ако ключа на елемента разположен на адреса получен след хеширане не съвпада с тъсения ключ се проверят елеметите от допълнителната част. При тях няма никаква наредба, което е неефективно, тъй като налага да се проверят ключовете на всички елементи поднали в колизия до момента. 

Списък на препълванията 
При използване на спъсък на препълванията отново има допълнителна памет, която се използва за справяне с колизиите. Съществено преимущество спрямо горепосочената техника е, че се пазят препълванията за всеки клас синоними поотделно. Най-често се използват свързани списъци съдържащи класовете синоними. Масива използван за реализацията на хеш-таблицата не съдържа хешираните елементи, а указатели към свързани списъци от елементи, чиито хеш-код е равен на индекса в масива. При добавяне на елемент полченият хеш-код се използва за определяне на индекса в масива и новопостъпващия елемнт се добавя в началото на списъка сочен от този указателя на този индекс. Аналогично се действа и при тръсене или изтриване на елемeнт - нека елеметът, които тъсрим или изтриваме е с ключ key; опрделя се хеш-кода h на елемента, взема се списъка list сочен от указателя с индекс h в таблицата и в list се търси или изтрива елемента с ключ key. 

 


Фиг.1 Списък с препълвания при таблица с размер 7 елемента и хеш-функция остатък при деление на размера на таблицата


Въпреки, че най-често употребяваната структура е списък, този вид хеширане може да се реализра като се използва по-ефективна структура от данни, където да се пазят препълванията - например наредено двоично дърво за тръсене. 
Отново, за интерфейса Map и за семантиката му е добре да се чете от книгата на Бейли.
15. Хеш-таблици, Декоратор.

За хеш-таблици вече има доста във предния въпрос. Метод на последователното свързване е това, което в предния въпрос е разказано като отворено хеширане, списък на препълванията и separate chaining (поне аз така мисля) и може да се чете оттам. Итератори за хеш-таблици – надявам се, при Бейли, според мене би трябвало да зависят силно от реализацията на хеш-таблицата, но може и да бъркам. Специално за итератори по хеш-таблици нищо не срещнах. Само знам че в PHP се използват масиви с ключове – произволни неща (включително думи) и че те се обхождат с командата foreach, но това едва ли е от полза : ) За софтуерния модел декоратор – какво е софтуерен модел вече пише по-горе, а тук конкретно:

In object-oriented programming, the decorator pattern is a design pattern that allows new/additional behaviour to be added to an existing class dynamically.
Intent: Attach additional responsibilities to an object dynamically. Decorators provide a flexible alternative to subclassing for extending functionality.

Introduction
The decorator pattern can be used to make it possible to extend (decorate) the functionality of a class at runtime. This works by adding a new decorator class that wraps the original class. This wrapping could be achieved by the following:

1. Subclass the original "Component" class into a "Decorator" class (see UML diagram)

2. In class Decorator, add a Component pointer as a field

3. Pass a Component to the Decorator constructor to initialize the Component pointer.

4. In class Decorator, redirect all "Component" methods to the "Component" pointer. This implies that all Decorator fields coming from the Component motherclass will never be used and their memory space will be wasted. That is an accepted drawback of the decorator pattern.

5. In class Decorator, override any Component method which behavior needs to be modified.

This pattern is designed so that multiple decorators can be stacked on top of each other, each time adding a new functionality to the overridden method.

The decorator pattern is an alternative to subclassing. Subclassing adds behavior at compile time whereas decorating can provide new behaviour at runtime.

This difference becomes most important when there are several independent ways of extending functionality. In some object-oriented programming languages, classes cannot be created at runtime, and it is typically not possible to predict what combinations of extensions will be needed at design time. This would mean that a new class would have to be made for every possible combination. By contrast, decorators are objects, created at runtime, and can be combined on a per-use basis. An example of the decorator pattern is the Java I/O Streams implementation.

Motivation






UML Diagram for the Window Example

As an example, consider a window in a windowing system. To allow scrolling of the window's contents, we may wish to add horizontal or vertical scrollbars to it, as appropriate. Assume windows are represented by instances of the Window class, and assume this class has no functionality for adding scrollbars. We could create a subclass ScrollingWindow that provides them, or we could create a ScrollingWindowDecorator that adds this functionality to existing Window objects. At this point, either solution would be fine.

Now let's assume we also wish the option to add borders to our windows. Again, our original Window class has no support. The ScrollingWindow subclass now poses a problem, because it has effectively created a new kind of window. If we wish to add border support to all windows, we must create subclasses WindowWithBorder and ScrollingWindowWithBorder. Obviously, this problem gets worse with every new feature to be added. For the decorator solution, we simply create a new BorderedWindowDecorator—at runtime, we can decorate existing windows with the ScrollingWindowDecorator or the BorderedWindowDecorator or both, as we see fit.

Another good example of where a decorator can be desired is when there is a need to restrict access to an object's properties or methods according to some set of rules or perhaps several parallel sets of rules (different user credentials, etc.) In this case instead of implementing the access control in the original object it is left unchanged and unaware of any restrictions on its use, and it is wrapped in an access control decorator object, which can then serve only the permitted subset of the original object's interface.

Подробен пример тук:

http://en.wikipedia.org/wiki/Decorator_pattern#Example
Още една, различна статия за същото е тази:

The Decorator Pattern is used for adding additional functionality to a particular object as opposed to a class of objects. It is easy to add functionality to an entire class of objects by subclassing an object, but it is impossible to extend a single object this way. With the Decorator Pattern, you can add functionality to a single object and leave others like it unmodified.

A Decorator, also known as a Wrapper, is an object that has an interface identical to an object that it contains. Any calls that the decorator gets, it relays to the object that it contains, and adds its own functionality along the way, either before or after the call. This gives you a lot of flexibility, since you can change what the decorator does at runtime, as opposed to having the change be static and determined at compile time by subclassing. Since a Decorator complies with the interface that the object that it contains, the Decorator is indistinguishable from the object that it contains.  That is, a Decorator is a concrete instance of the abstract class, and thus is indistinguishable from any other concrete instance, including other decorators.   This can be used to great advantage, as you can recursively nest decorators without any other objects being able to tell the difference, allowing a near infinite amount of customization.


[image: image9.jpg]AComponent ||
[+ void - oSty
Decorator
Concreie Component u
[+ void - doStutiy) +vndcnmmﬁ5mﬂ{)mm
ConcreieDecoratorh ConcreieDecorator
[+ void  doStutiy)
[= State - aaitionalState s
[+ void  doStatiy) oSt





Decorators add the ability to dynamically alter the behavior of an object because a decorator can be added or removed from an object without the client realizing that anything changed.  It is a good idea to use a Decorator in a situation where you want to change the behaviour of an object repeatedly (by adding and subtracting functionality) during runtime.     

The dynamic behavior modification capability also means that decorators are useful for adapting objects to new situations without re-writing the original object's code.

The code for a decorator would something like this:

void doStuff() {
// any pre-processing code goes here.
aComponent.doStuff()  // delegate to the decoree 

// any post-processing code goes here
}
Note that the decorator can opt to not delegate to the decoree, if, for instance, some condition was not met.

A very nice example of decorators is Java's I/O stream implementation.

16, 17. Графи

За мрежови структури от данни може да се каже, че позволяват представянето на по-сложни и богати връзки между елементите, както и моделирането на явления от истинския живот – класически пример е моделирането чрез граф на задачата за търговския пътник, търсенето на минимално покриващо дърво на граф, което да ни даде оптималния начин да прекараме електро- или водоснабдяването в някаква област, моделирането на комуникациите в някаква сфера на съвр. общество и други – всичко това, разбира се, общи приказки от въздуха. 

Бейли си има хубава глава върху графи. Презентацията Graphs.pdf също изглежда доста подробна и свястно написана. Ето тук
http://en.wikipedia.org/wiki/List_of_data_structures#Graphs
също има линкове към доста статии върху графи. Да не забравяме все пак, и че повечето нещо в тоя въпрос е теория, която вече би трябвало да знаем от Дискретни структури 1. 

In computer science, a graph is an abstract data structure that is meant to implement the graph concept from mathematics.

A graph data structure consists mainly of a finite (and possibly mutable) set of ordered pairs, called edges or arcs, of certain entities called nodes or vertices. As in mathematics, an edge (x,y) is said to point or go from x to y. The nodes may be part of the graph structure, or may be external entities represented by integer indices or references.

A graph data structure may also associate to each edge some edge value, such as a symbolic label or a numeric attribute (cost, capacity, length, etc.).

Operations
The basic operations provided by a graph data structure G usually include

· adjacent(G, x,y): tests whether there is an edge from node x to node y.

· neighbors(G, x): lists all nodes y such that there is an edge from x to y.

· add(G, x,y): adds to G the edge from x to y, if it is not there.

· delete(G, x,y): removes the edge from x to y, if it is there.

Structures that associate values to the edges usually provide also

· get_value(G, x,y): returns the value associated to the edge (x,y).

· set_value(G, x,y,v): sets the value associated to the edge (x,y) to v.

Representations
Two main data structures for the representation of graphs are used in practice. The first is called an adjacency list, and is implemented as an array with one linked list for each source node, containing the destination nodes of the edges that leave each node. The second is a two-dimensional Boolean adjacency matrix, in which the rows and columns source and destination vertices and entries in the array indicate whether an edge exists between the vertices. Adjacency lists are preferred for sparse graphs; otherwise, an adjacency matrix is a good choice.

In mathematics and computer science, the adjacency matrix of a finite directed or undirected graph G on n vertices is the n × n matrix where the nondiagonal entry aij is the number of edges from vertex i to vertex j, and the diagonal entry aii is either twice the number of loops at vertex i or just the number of loops (in other words, the number of edges from vertex i to itself) (usages differ, depending on the mathematical needs; this article follows the former convention for undirected graphs, though directed graphs always follow the latter). There exists a unique adjacency matrix for each graph (up to permuting rows and columns), and it is not the adjacency matrix of any other graph. In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal. If the graph is undirected, the adjacency matrix is symmetric.

When used as a data structure, the main competitor for the adjacency matrix is the adjacency list. Because each entry in the adjacency matrix requires only one bit, they can be represented in a very compact way, occupying only n2 / 8 bytes of contiguous space, where n is the number of vertices. Besides just avoiding wasted space, this compactness encourages locality of reference.

On the other hand, for a sparse graph, adjacency lists win out, because they do not use any space to represent edges which are not present. Using a naive array implementation on a 32-bit computer, an adjacency list for an undirected graph requires about 8e bytes of storage, where e is the number of edges.

Besides the space tradeoff, the different data structures also facilitate different operations. Finding all vertices adjacent to a given vertex in an adjacency list is as simple as reading the list. With an adjacency matrix, an entire row must instead be scanned, which takes O(n) time. Whether there is an edge between two given vertices can be determined at once with an adjacency matrix, while requiring time proportional to the minimum degree of the two vertices with the adjacency list.

In graph theory, an adjacency list is the representation of all edges or arcs in a graph as a list.

If the graph is undirected, every entry is a set of two nodes containing the two ends of the corresponding edge; if it is directed, every entry is a tuple of two nodes, one denoting the source node and the other denoting the destination node of the corresponding arc.

Typically, adjacency lists are unordered.

Application in computer science
	The graph pictured above has this adjacency list representation:

	a
	adjacent to
	b,c

	b
	adjacent to
	a,c

	c
	adjacent to
	a,b


In computer science, an adjacency list is a closely related data structure for representing graphs. In an adjacency list representation, we keep, for each vertex in the graph, all other vertices which it has an edge to (that vertex's "adjacency list"). For instance, the representation suggested by van Rossum, in which a hash table is used to associate each vertex with an array of adjacent vertices, can be seen as an instance of this type of representation, as can the representation in Cormen et al. in which an array indexed by vertex numbers points to a singly-linked list of the neighbors of each vertex.

One difficulty with the adjacency list structure is that it has no obvious place to store data associated with the edges of a graph, such as the lengths or costs of the edges. To remedy this, some algorithms texts such as that of Goodrich and Tamassia advocate a more object oriented variant of the adjacency list structure, sometimes called an incidence list, which stores for each vertex a list of objects representing the edges incident to that vertex. To complete the structure, each edge must point back to the two vertices forming its endpoints. The extra edge objects in this version of the adjacency list cause it to use more memory than the version in which adjacent vertices are listed directly, but are a convenient location to store additional information about each edge.

Тука за път в граф може да се спомене рекурсивния алгоритъм, който сме писали (Дали има път с дължина n от А до В? Ами, проверяваме има ли път с дължина n-1 от А до някой съсед на В, и така рекурсивно топим дължината), или пък метода с повдигането на степен на матрицата на инцидентност.

За представяне на графи вече писахме. За обхождането в ширина и дълбочина и за относителните им предимства и недостатъци вече сме говорили по дискретни структури. Може да се спомене кое представяне на графа за кое обхождане е по-подходящо (както и изобщо за решаването на кои проблеми е по-подходящо). 

Deapth-first search

Depth-first search (DFS) is an algorithm for traversing or searching a tree, tree structure, or graph. One starts at the root (selecting some node as the root in the graph case) and explores as far as possible along each branch before backtracking.

Formally, DFS is an uninformed search that progresses by expanding the first child node of the search tree that appears and thus going deeper and deeper until a goal node is found, or until it hits a node that has no children. Then the search backtracks, returning to the most recent node it hasn't finished exploring. In a non-recursive implementation, all freshly expanded nodes are added to a stack for exploration.

Space complexity of DFS is much lower than BFS (breadth-first search). It also lends itself much better to heuristic methods of choosing a likely-looking branch. Time complexity of both algorithms are proportional to the number of vertices plus the number of edges in the graphs they traverse (O(|V| + |E|)).

Output of a depth-first search
The most natural result of a depth first search of a graph (if it is considered as a function rather than a procedure) is a spanning tree of the vertices reached during the search. 

Applications
Algorithms where DFS is used:

· Finding connected components.

· Topological sorting.

· Finding 2-(edge or vertex)-connected components.

· Finding strongly connected components.

· Solving puzzles with only one solution, such as mazes.

Breadth-first search

In graph theory, breadth-first search (BFS) is a graph search algorithm that begins at the root node and explores all the neighboring nodes. Then for each of those nearest nodes, it explores their unexplored neighbor nodes, and so on, until it finds the goal.
Algorithm (informal)
1. Enqueue the root node.

2. Dequeue a node and examine it. 

· If the element sought is found in this node, quit the search and return a result.

· Otherwise enqueue any successors (the direct child nodes) that have not yet been examined.

3. If the queue is empty, every node on the graph has been examined – quit the search and return "not found".

4. Repeat from Step 2.

Note: Using a stack instead of a queue would turn this algorithm into a depth-first search.

Features
Space complexity
Since all of the nodes of a level must be saved until their child nodes in the next level have been generated, the space complexity is proportional to the number of nodes at the deepest level. Given a branching factor b and graph depth d the asymptotic space complexity is the number of nodes at the deepest level, O(bd). When the number of vertices and edges in the graph are known ahead of time, the space complexity can also be expressed as O( | E | + | V | ) where | E | is the cardinality of the set of edges (the number of edges), and | V | is the cardinality of the set of vertices. In the worst case the graph has a depth of 1 and all vertices must be stored. Since it is exponential in the depth of the graph, breadth-first search is often impractical for large problems on systems with bounded space.

Time complexity
Since in the worst case breadth-first search has to consider all paths to all possible nodes the time complexity of breadth-first search is [image: image10.png]


which asymptotically approaches O(bd). The time complexity can also be expressed as O( | E | + | V | ) since every vertex and every edge will be explored in the worst case.

Completeness
Breadth-first search is complete. This means that if there is a solution breadth-first search will find it regardless of the kind of graph. However, if the graph is infinite and there is no solution breadth-first search will diverge.

Optimality
For unit-step cost, breadth-first search is optimal. In general breadth-first search is not optimal since it always returns the result with the fewest edges between the start node and the goal node. If the graph is a weighted graph, and therefore has costs associated with each step, a goal next to the start does not have to be the cheapest goal available. This problem is solved by improving breadth-first search to uniform-cost search which considers the path costs. Nevertheless, if the graph is not weighted, and therefore all step costs are equal, breadth-first search will find the nearest and the best solution.

Applications
Breadth-first search can be used to solve many problems in graph theory, for example:

· Finding all connected components in a graph.

· Finding all nodes within one connected component

· Copying Collection, Cheney's algorithm
· Finding the shortest path between two nodes u and v (in an unweighted graph)

· Finding the shortest path between two nodes u and v (in a weighted graph: see talk page)

· Testing a graph for bipartiteness
Дотук!
: )
  

